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Abstract

Variable-delay tunable optical delay line or optical buffers are critical for the devel-

opment of all-optical networks components as well as interferometry and analytic

instruments. Recent research on slow light may hold the key for the development

of the first practical tunable optical delay device. In this research an atomic vapor

pulse delay model is developed including hyperfine structure and Voigt lineshape.

Frequency tunable pulse delays of 0-37 ns are achieved in Cs D2 at various vapor

pressures of 0.15-5.28 mTorr between 78.9 ◦C and 137.2 ◦C in agreement with model

prediction. Furthermore full-frequency Cs D1 line hyperfine optical delay model is

validated with the observation of delays of 1.6 ns to 24.1 ns. Additional optical control

of delays were demonstrated by pumping the Cs D2 transition and observing resulting

effects in the D1 delay spectrum. For a pump at four times the saturation intensity,

delays are reduced by a maximum of 78% in a narrow region of 110 MHz in agreement

with a Kramers-Kronig model prediction. Diode-pumped alkali laser (DPAL) systems

depend on accurate models to scale to high power and optimize performance. There

is currently no validated bleach wave model of an operating DPAL system. This work

partially examines the bleached wave temporal dynamics during a 10 ns high-power

D2 pulse event with 0-400 Torr helium buffer gas. The linear dispersion delay model

is a valuable improvement over currently used Lorentzian approximations and pro-

vides a significant addition to the field tunable slow light delays. This work presents

the first reported spectral hole-burnt linear dispersion delay effects in an alkali vapor.

The hyperfine relaxation observations present insight into the complex bleach wave

dynamics during a high-intensity pulsed pump in DPAL systems.
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TUNABLE OPTICAL DELAY IN DOPPLER-BROADENED CESIUM VAPOR

I. Introduction

Variable-delay tunable optical delay line or optical buffers are critical for the de-

velopment of all-optical networks and optical signal processing (Tucker et al., 2005).

Applications for tunable optical delay systems include simple optical delay lines, opti-

cal switches and optical storage devices for optical communication systems (Camacho

et al., 2007; Tucker et al., 2005), as well as interferometry (Shi et al., 2007; Purves

et al., 2006) for remote sensing and analytic instruments (Camacho et al., 2006b).

Recent research in an emerging field of optical physics known as slow light may hold

the key for the development of the first practical tunable optical delay applications.

Simply stated, “group velocity gives the velocity with which a pulse of light propa-

gates through a material system” (Boyd and Gauthier, 2002). Boyd defines the terms

“fast” and “slow” light by comparing the group velocity to the velocity of light c.

Recent research has established that it is possible to exercise extraordinary
control of the velocity of propagation of light pulses through a material
system. Both extremely slow propagation (much slower than the velocity
of light in vacuum) and fast propagation (exceeding the velocity of light in
vacuum) have been observed. (Boyd and Gauthier, 2002)

A number of methods have been employed to achieve slow light including exploit-

ing the natural resonant absorption in atomic systems (Khurgin and Tucker, 2009),

self-induced transparency (SIT) (Allen and Eberly, 1987) and electronically-induced

transparency (EIT) (Marangos, 1998; Milonni, 2002; Boyd and Gauthier, 2002; Fleis-

chhauer et al., 2005; Milonni, 2005). Ideal optical system components for optical delay

should have long delay/buffer times, no loss of signal amplitude and no dispersion.
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For a delay system to be of practical use in future applications it must be capable of

storing large streams of optical information, and allow for random access of buffered

optical signals all in compact physical dimensions(Tucker et al., 2005). Fundamental

understanding of the delay effects on optical pulse propagation and accurate delay

prediction are essential for any slow light system.

The study of slow light in atomic vapors have played an important role in the

development of tunable optical delay systems. Many of the preliminary studies in slow

light were accomplished using atomic vapors (Khurgin and Tucker, 2009). Knowledge

of the physics of slow light in atomic vapors are important in developing any practical

optical buffer system. Alkali-metal elements offer well-documented relatively simple

atomic systems with physical properties, such as large vapor pressures at moderate

temperatures, that make them ideal for slow light laboratory media.

It has been theorized (Brillouin, 1960; Garrett and McCumber, 1970) and demon-

strated (Grischkowsky, 1973; Tanaka et al., 2003) to some degree that optical pulse

delay is achievable using a single laser tuned in the neighborhood of resonant atomic

transitions. Full frequency-dependent delay models have not been developed. In this

work a frequency-dependent Kramers-Kronig delay model is developed using complete

hyperfine structure treatment with Voigt profile lineshapes in a Doppler-broadened

alkali-metal vapor. Delay predictions are compared to observed pulse delay to validate

the delay model.

In EIT narrow transmission windows generate areas of steep dispersion. Similarly

it has been theorized that spectral holes in an absorption profile could be used to

produce tunable delay effects (Shakhmuratov et al., 2005; Agarwal and Dey, 2003).

The slow light hole burning technique has been demonstrated in solid photonic media

(Bigelow et al., 2003) and recently rubidium vapor (Camacho et al., 2006b). Previous

work focused on frequency modulated pump beam. In this work control of pulse

delays in cesium vapor were demonstrated by pumping the D2 (6 2S1/2 − 6 2P1/2)
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transition and observing resulting holes in the D1 delay spectrum. Additionally the

frequency dependence of the delays of the probe laser in the vicinity of the spectral

holes is examined and compared to the Kramers-Kronig model prediction.

Tunable optical delay systems used in this research are similar to diode-pumped

alkali laser (DPAL) system (Rabinowitz et al., 1962; Krupke et al., 2003; Ehrenreich

et al., 2005; Beach et al., 2004) and application of the knowledge gained in pulse

propagation can be useful in the understanding of the temporal dynamics of a DPAL

system. Normally three-level lasers are not possible due to the difficulty in achiev-

ing population inversion. The alkali-laser is a gas-phase three-level laser using the

ground state (S1/2) and the first two excited states (P1/2 and P3/2) of the alkali-metal

vapor. Population from the upper P3/2 state is transferred to the lasing P1/2 level

through a collisional gas species like ethane or methane. The recycle rate at which

an individual photon excites the atom, collisionally transferred to the lasing level

and lases is very rapid, the quantum efficiency of such a three-level system is higher

than other laser systems, and the gas-phase laser does not have the thermal manage-

ment issues of solid-state laser systems. While DPAL systems have been in use for

several years, complete theoretical description of the system is still being developed

in order to optimize the lasers for scaling to high output power. Optimization of a

DPAL system depends on accurate pressure-broadening models to properly match the

atomic absorption profile to the broadband diode pump source. There is currently no

validated bleach wave model of an operating DPAL system. Transverse absorption

spectroscopy setup is used in this work to partially examine the temporal dynamics

of the bleached wave of a pulsed alkali-metal vapor system.
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II. Background

Theoretical foundations of for slow light have been well-known for for over a

century. The concept of group velocity originated in the study of sound waves by

Sir William R. Hamilton (1839) and Lord Rayleigh (1894) (Brillouin, 1960). The

problem was of considerable interest in connection with the velocity of light in the

early 1900’s after Albert Einstein’s Special Theory of Relativity because of the possi-

bility of propagation faster than the speed of light, c (Boyd and Gauthier, 2002). In

1907 Arnold Sommerfeld and later in 1914, Sommerfeld and Léon Brillouin, developed

the theory of pulse propagation through a collection of Lorentz oscillators (treating

photon-atoms interactions as oscillators). As outlined by Brillouin in “Wave Propaga-

tion and Group Velocity” (Brillouin, 1960), they concluded that a pulse front travels

at c regardless of propagation region and that no signal velocity could exceed c in

agreement with Einstein’s theory (Brillouin, 1960). However, group velocity, often

confused with signal velocity, could be greater than c, less than c, or even take on

negative values.

Since the early theoretical work atomic vapors have played a role in the study of

slow light and continue to be integral to the fundamental understanding of optical

delay research (Khurgin and Tucker, 2009). Slow light research in atomic vapors is

broadly categorized by the method used to achieve tunable group delays.

In the simplest case low intensity laser light near naturally occurring resonant

atomic transitions of a two-level system provide the necessary dispersion to induce

pulse delays (Khurgin and Tucker, 2009). This dissertation will refer to this simple

linear case of absorption or refractive index variation as dispersion delay. Typical

dispersion delay experiments occur within the linear intensity regime and can be

adequately described using the semi-classical approach where the atom is treated

quantum mechanically and the field is treated classically.

4



www.manaraa.com

Historically early studies of slow light were performed as non-linear optics shortly

after the invention of the laser (Khurgin and Tucker, 2009). Self-induced transparency

(SIT) was first discovered by McCall and Hahn in 1967 (McCall and Hahn, 1967).

McCall and Hahn passed pulses generated by a ruby laser through additional ruby

rods and observed significant group delay and SIT effect where coherent light near

the resonant transition frequency is transmitted with little loss of pulse amplitude.

Study of SIT was later applied to gases such as sulphur hexafluoride SF6 (Patel and

Slusher, 1967) and eventually alkali-metal vapors (Bradley et al., 1970; Slusher and

Gibbs, 1972). The SIT effect is dependent on the nonlinearity in laser intensity but

is similar to dispersion delay in the wings of the absorption profile.

The third major category of slow light mechanisms is electrically-induced trans-

parency (EIT) discovered by Harris et al. (Harris et al., 1990). EIT is a coherent

optical effect which creates a narrow transparency window due to quantum inter-

ference between states to eliminate absorption at the resonant transition frequency

(Marangos, 1998; Fleischhauer et al., 2005).

This chapter begins with the necessary foundation in semi-classical theory to

explain dispersion delay in the linear region, followed by a discussion of SIT in terms

of non-linear optics and EIT in common quantum optics notation. Pertinent research

relevant to the understanding of slow light and tunable delays will be presented.

Finally a brief description of diode pumped alkali lasers and their similarity to slow

light study will be discussed.
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Semi-Classical Wave Propagation

From Maxwell equations it is understood that electromagnetic fields have wavelike

solutions. Consider the electric field in the common monochromatic plane wave form

E(z, t) = E0 exp{i (kz − ωt)} (1)

where k = nω/c = 2π/λ, and angular frequency ω = 2πν with refractive index n and

the speed of light in a vacuum c.

Phase velocity vφis the speed with which cophasal surfaces advance in the medium

(Born and Wolf, 1999). The phase of the plane wave is given by

φ = kz − ωt (2)

so that points of constant phase move a small distance δz in a small time δt such that

kδz = ωδt (3)

The phase velocity is the distance/time or vφ = δz/δt,

vφ =
ω

k
=
c

n
(4)

In the medium, the peak of a pulse, or peak of the group, moves with the same

phase, thus the phase

φ = kz − ωt =
nω

c
z − ωt. (5)
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If the phase at the peak remains constant with respect to ω, so that ∂φ/∂ω = 0

∂φ

∂ω
= 0

∂n

∂ω

ωz

c
+
nz

c
− t = 0{

∂n

∂ω

ω

c
+
n

c

}
z − t = 0 (6)

Rewriting Equation (6) as z = vgt the group velocity vg is

vg =
c

n+ ω ∂n
∂ω

=
∂ω

∂k
(7)

Equation (7) may also be written as in terms of the group index of refraction ng

vg =
c

ng
(8)

where

ng = n+ ω
∂n

∂ω
. (9)

Starting the works of Hamilton and Raleigh in the field of sound waves, the treat-

ment wave propagation was extended to optics and the speed of a pulse of light. Phase

velocity vφ and group velocity vg are used to describe the velocity of the phase front

and propagation a packet. Sommerfeld and Brillouin defined the velocities and clearly

outlines how subluminal and superluminal velocities do not violate Einstein causality

(Brillouin, 1960). Furthermore Brillouin discussed the Voigt profile and the effects of

dispersion near atomic resonant absorption lines (Brillouin, 1960). Subsequent works

depend on these fundamental velocity definitions.

An analytical discussion of the effect on pulse propagation near an absorption line

is given by C. G. B. Garrett and D. E. McCumber (Garrett and McCumber, 1970).

In their article they discuss the potential for superluminal or subluminal velocities in
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various regions and show that the pulse remains unchanged (substantially Gaussian)

(Garrett and McCumber, 1970).

Complex Index of Refraction

Slow and fast light effects are dependent on rapid variations in the index of refrac-

tion as a function of frequency (i.e. dispersion) that occurs in the vicinity of resonant

material properties of the propagation medium (Boyd and Gauthier, 2002). Index of

refraction is a complex quantity given by the equation

ñ = nR + i nI (10)

Based on the macroscopic Maxwell equations, beam intensity is determined by

the Poynting vector S (Griffiths, 1999)

S = E×H (11)

=
1

µ0

(E×B) (12)

= ε0c
2(E×B) (13)

where the magnitude of E and B are related by

E×B =
1

c
E · E∗ (14)

such that, the time-averaged Poynting vector in terms of the electric field yields

I = 〈S〉 = ε0c 〈E · E∗〉 (15)
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Given the electric field as in Equation (1), using complex index of refraction ñ

E(z, t) = E0 exp
[
i (ñ

ω

c
z − ωt)

]
(16)

= E0 exp
[
i (nR

ω

c
z − ωt)− nI

ω

c
z
]

(17)

so that

E · E∗ = E2
0 exp

[
i (nR

ω

c
z − ωt)− nI

ω

c
z
]

exp
[
−i (nR

ω

c
z − ωt)− nI

ω

c
z
]

(18)

= E2
0 exp

[
−2nI

ω

c
z
]

(19)

= E2
0 exp [−α(ω)z] (20)

where

α(ω) =
2ω

c
nI or α(ν) =

4πν

c
nI. (21)

Intensity becomes

I = ε0cE
2
0 exp [−α(ω)z] (22)

which decreases exponentially with z if α is positive. Hence α, in cm−1, is called the

absorption coefficient if α is positive or gain if α is negative. Notation may vary in

other sources if the sign is included in the coefficient.

Given the intensity at the beginning of the medium, z = 0, is

I(z = 0) = I0. (23)

The ratio of the intensity at a given depth z relative to the initial intensity I0 is

I(z) = I0 exp [−α(ω)z] . (24)

9
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This relation known as the Beer-Lambert law (or simply Beer’s law) is true only in

the linear regime when the intensity I is below the saturation intensity Isat.

Kramers-Kronig Relations

Both parts of the complex index of refraction gives light to important phenomena–

the real index of refraction effects group velocity and the imaginary index of refrac-

tion accounts for observed absorption in a dispersive medium. The Kramers-Kronig

relations connect the real and imaginary parts of the complex index of refraction,

assuming ñ(ω) is regular at ω = 0 (Jackson, 1999) (Hutchings et al., 1992).

nR(ω)− 1 =
2

π
P

∫ ∞
0

ξnI(ξ)

ξ2 − ω2
dξ (25)

nI(ω) = −2ω

π
P

∫ ∞
0

nR(ξ)− 1

ξ2 − ω2
dξ (26)

where P is the Cauchy principal value. If either term, nR or nI, is known, the other

may be determined. From Equation (21)

nI(ν) =
c

4πν
α(ν) (27)

thus Equation (25) can be written in terms of the absorption coefficient as a function

of linear frequency ν

nR(ν)− 1 =
2

π
P

∫ ∞
0

ξ c
4πξ
α(ξ)

ξ2 − ν2
dξ (28)

=
c

2π2
P

∫ ∞
0

α(ξ)

ξ2 − ν2
dξ (29)

We have developed an expression for the real index of refraction nR(ν) as a func-
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Figure 1. Absorption cross section construct. Atoms within a slab of
area A and thickness δz interact with light that strikes in cross sectional
area σabs. Total power P is evenly distributed across the area A.

tion of frequency, known as dispersion (Menzel, 2007). Normally index of refraction

increases with increasing frequency known as normal dispersion. When index of re-

fraction decreases with increasing frequency, it is known as anomalous dispersion.

In spectroscopy it is common to measure attenuation and determine the index

of refraction from the Kramers-Kronig relations. For example, an observed discrete

absorption line spectrum, discrete step width ∆ν̃ in wavenumbers, the discrete values

of the dispersion nR(p ·∆ν̃) at the frequencies p ·∆ν̃ follow from the Kramers-Kronig

relation (Menzel, 2007)

nR(p ·∆ν̃)− nR(ν̃ =∞) =
1

2π2∆ν̃

∞∑
m=0,6=p

1− (−1)m+p

m2 − p2
α(m ·∆ν̃) (30)

Absorption Cross Section

A phenomenological construct for the medium’s macroscopic absorption is de-

scribed using the following model (Siegman, 1986). Consider a slab of material in

which absorbing particles are embedded as shown in Figure 1. Number density N

is absorbers per unit volume N = n/V . For simplicity let the particle cross sectional
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area σabs perpendicular to the incident radiation of total power P represents an area

of 100% probability of interaction. Probability of interaction is 0% elsewhere on the

surface area of the slab A. Intensity is defined as I ≡ P/A. The relative change in

intensity of the incident radiation is given by

dI

I
=
Iout − Iin

Iin
(31)

= −nσabs
A

(32)

= −NV σabs
A

(33)

= −NAσabsδz
A

(34)

= −Nσabsδz. (35)

Integrating Equation (35) with respect to the distance of propagation through the

slab z yields Beer’s law attenuation

∫ z

0

1

I
dI = −

∫ z

0

Nσabsdξ (36)

ln[I(z)]− ln[I0] = −Nσabsz (37)

I(z) = I0 exp [−Nσabsz] . (38)

Comparing Equation (24) to Equation (38) reveals equations of similar form, such

that

α(ω)z = Nσabsz (39)

α(ω) = Nσabs. (40)

Applying quantum mechanical principles, we can find the cross section for absorption

σabs. By calculating the number density N as a function of the vapor pressure, we
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can calculate the absorption coefficient α(ν).

If we consider cesium vapor an ideal gas, we can find the number density N = n/V

by n/V = P/kBT , where P is the cesium vapor pressure as a function of temperature

T given by Equation (104) (Alcock et al., 1984) as shown in Appendix B Figure 42. At

this point we seek σabs as a function of photon-atom interaction to find the absorption

coefficient.

Photon-Atom Interaction

Light-matter interactions are described by quantum mechanical transition prob-

abilities. Electric dipole interactions are the dominant factor for determining atomic

energy level therefore the matrix elements are based on the electric dipole moment

(Fox, 2006). We seek to find the cross section, related to the probability of interaction,

in terms of the effective dipole moment µF ′′F ′ (Steck, 2009, eqn (43))

|µF ′′F ′ |2 =
1

3
SF ′′F ′ | 〈J | er | J ′〉 |2 (41)

where SF ′′F ′ is the relative strength factor. The radiative lifetime τr is given by

(Loudon, 2000, eqn (2.3.21))

1

τr
= A21 =

e2ω3
0g1D

2
12

3πε0~c3g2

=
ω3

0

3πε0~c3

(
2J + 1

2J ′ + 1

)
| 〈J | er | J ′〉 |2 (42)

where e is the unit charge, ω0 is the transition frequency, D12 is the transition dipole

moment, ε0 is vacuum permittivity, ~ is the reduced Plank constant, and g1/g2 are the
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level degeneracies. Equation 42 may be used to solve for the effective dipole moment,

| 〈J | er | J ′〉 |2 =
1

τ

3πε0~c3

ω3
0

(
2J ′ + 1

2J + 1

)
(43)

|µF ′′F ′ |2 = SF ′′F ′
1

τ

πε0~c3

ω3
0

(
2J ′ + 1

2J + 1

)
(44)

The absorption cross section is given (Bernath, 2005, eqn (1.57))

σabs =
2π2 |µF ′′F ′ |2

3ε0hc
ν g(ν − ν0) (45)

combining Equations (44) and (45) yields

σabs =
2π2

3ε0hc
SF ′′F ′

1

τ

πε0~c3

ω3
0

(
2J ′ + 1

2J + 1

)
ν g(ν − ν0) (46)

σabs =
c2

24π

1

τ
SF ′′F ′

(
2J ′ + 1

2J + 1

)
ν

ν3
0

g(ν − ν0) (47)

Line Strength

The remaining pieces in our goal of quantifying the group velocity are related

to cesium physical properties and D1 (62S1/2 → 62P1/2) and D2 (62S1/2 → 62P3/2)

D-line properties are cited from published literature, notably Steck’s Cesium D-Line

Data (Steck, 2009), Alcock et al. vapor pressure equations (Alcock et al., 1984),

and Arimondo et al. experimental determination of alkali-metal hyperfine structure

(Arimondo et al., 1977). See Appendix B for additional cesium information.

The SF ′′F ′ (6− j) symbol provide a measure of the relative strength factors of the
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F ′′ → F ′ transition, given by (Steck, 2009, eqn (41))

SF ′′F ′ = (2F ′ + 1)(2J + 1)

 J J ′ 1

F ′ F ′′ I


2

(48)

which obeys the probability sum rule

∑
F ′

SF ′′F ′ = 1. (49)

The values are summarized in Table 8 and Table 9.

For the S1/2 ground state, J = 1/2, and total nuclear angular momentum I = 7/2.

F = J+I so that the magnitude of F takes on the values of | J − I | 6 F 6 J+I =⇒

F = 3 or 4. For the D1 excited state P1/2, J = 1/2 and F = 3 or 4. See Figure 44.

For the D2 excited state P3/2, J = 3/2 and F = 2, 3, 4 or 5. See Figure 45. The

central resonant absorption frequency ν0 is given in Table 5 and Table 6.

Lineshape Functions

Assuming low alkali vapor pressure such that Cs-Cs collisions are negligible the

pressure broadening and spectral line shift are a function of buffer gas pressure alone.

The pressure effects are tabulated for several buffer gases in B Table 10.

Pressure effects must be corrected for temperature. Given the data was taken at

Tdata = 294.15 K, the buffer gas pressure effects on system at temperature Tsys (K)

and buffer gas pressure Pi (Torr) by

∆νL =
1

2π

(
1

τr

)
+
∑
i

γi

(
Tsys
Tdata

)1/2

Pi (50)

ν0 → ν0 +
∑
i

δi

(
Tsys
Tdata

)1/2

(51)
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where ∆νL is the Lorentzian line width, ν0 is the center frequency for each hyperfine

line, γi is the pressure broadening coefficient for each buffer gas species and δi is the

frequency shift caused by each buffer gas species.

The lineshape function g(ν− ν0) is a convolution of homogeneous pressure broad-

ening and inhomogeneous Doppler broadening effects. The pressure Broadening

(Lorentzian) (Bernath, 2005, eqn (1.78)) is given by

gP (ν − ν0) =
∆νL/(2π)

(∆νL/2)2 + (ν − ν0)2
(52)

where ∆νL is the Lorentzian full width at half maximum (FWHM).

The Doppler Broadening (Gaussian) (Bernath, 2005, eqn (1.93)) is given by

gD(ν − ν0) =
2

∆νD

√
ln(2)

π
exp

[
−4 ln(2)

ν − ν0

∆νD

2
]

(53)

where

∆νD = 2ν0

√
2kBT ln(2)

mc2
. (54)

The Voigt profile is a convolution between the inhomogeneous Gaussian gI and ho-

mogeneous Lorentzian gH line shape functions and is given by (Bernath, 2005, eqn

(1.83))

g(ν − ν0) =

∫
gI(ξ − ν0)gH(ν − ξ) dξ (55)

A useful algorithm for the Voigt profile is found in (Thompson, 1993)

V (u, a) = Re
[
exp[z2]erfc(z)

]
(56)
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where z = a+ i u, a =
√

ln(2)∆νH
∆νI

, and u = 2
√

ln(2) (ν−ν0)
∆νI

gV (ν, ν0) = 2

√
ln(2)

π

1

∆νI
Re

exp

−(2
√

ln(2)

(
ν + i ∆νH

2

∆νI

))2
 ·

erfc

[
−i

(
2
√

ln(2)

(
ν + i ∆νH

2

∆νI

))]
(57)

Each of the six allowed transitions for Cs D2, are added together, weighted by

the relative ground state population assuming Boltzmann population distribution

according to

f = pr =
gr exp[−βEr]∑
i gi exp[−βEi]

(58)

resulting in the total absorption cross section.

Any effect that changes the absorption profile will change the group velocity delay

through the resonant medium. For example, changing the temperature of the alkali

cell varies the cesium concentration in the cell. Attenuation depends on concentration,

which directly effects the real index of refraction. Thus varying temperature becomes

a knob by which the delay is tunable, albeit a slow-tunable method. Other possible

methods of tuning the group velocity in dispersion delay medium include buffer gas

pressure or frequency tuning of the pulse across the absorption spectrum. Saturation

effects such as SIT and hole burning may also be alternate methods of optical delay

tuning.

Wave Propagation and Group Velocity

The defining theoretical work in the propagation of waves comes from the com-

bined works of A. Sommerfeld and L. Brillouin. The definition phase velocity, vφ,

and group velocity, vg, used to describe the velocity of the phase front and propa-

gation a packet as given by Sommerfeld from works originating around 1910, first
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published during World War I, and reprinted in complete form in Wave Propaga-

tion and Group Velocity (Brillouin, 1960) in 1960. Standard definitions for group

velocity, signal velocity, and velocity of energy transfer are critically importance and

often misunderstood (Born and Wolf, 1999; Jackson, 1999; Chu and Wong, 1982a,b).

Brillouin and Sommerfeld opened the possibilities that are disturbing or surprising to

many, such as subluminal (slow light), superluminal (fast light) and negative group

velocities (Brillouin, 1960). Their work carefully demonstrates that (first) forerunners

propagate at velocity c and the signal arrives at the aptly named signal velocity. Sig-

nal velocity does not deviate from group velocity except in the region of anomalous

dispersion(dn/dν < 0) (Brillouin, 1960, p.78). The signal velocity is always equal to

or less than c and Einstein causality is not violated.

The possibility of group velocities that are much greater than c, “or even negative”

are outlined in the 1970 work of Garrett and McCumber (Garrett and McCumber,

1970). There is a comment in Brillouin, citing A. Schuster’s Einführung in die theo-

retische Optik (Introduction to Theoretical Optics)[Leipzig, 1907], in which he states

that “group velocity has meaning only so long as it agrees with the signal veloc-

ity...negative parts of the group velocity have no physical meaning”. Garrett and

McCumber theoretically demonstrate through analytical approximation and numeri-

cal analysis, that there remains some physical significance and that the Gaussian pulse

is not significantly distorted if the pulse is “spectrally narrow in comparison with the

atomic line“ (Garrett and McCumber, 1970). An additional article by M. D. Crisp

provides theoretical justification in the photon-atom interaction as the cause of the ob-

served group velocity variations in the neighborhood of resonant atomic lines (Crisp,

1971). Crisp states that the shift in the center of gravity (maximum pulse amplitude)

is due to the asymmetric absorption or amplification of energy from the light pulse

and the pulse will propagate at group velocity despite significant pulse distortion in

a dispersive medium (Chu and Wong, 1982a,b).
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Another important theoretical pulse propagation publication was printed in 1993,

wherein Bolda, Chiao and Garrision prove two theorems for calculating group velocity

in dispersive media in the region of atomic resonances (Bolda et al., 1993). The first

theorem states that regions of abnormal group velocity, regions where vg is superlu-

minal, infinite or negative, “are required by the causality arguments that lead to the

Kramers-Kronig relations” (Bolda et al., 1993). The second theorem states that in-

formation about the abnormal group velocity regions is obtained from the absorption

(or gain) curves of the medium (Bolda et al., 1993).

Theoretical description of optical pumping mechanisms and development of the

quantum mechanical formalism started with the work of Barrat and Cohen-Tanoudji

(Barrat and Cohen-Tannoudji, 1961b,a), as well as Harper and Mathur (Harper and

Mathur, 1967). Pulse propagation effects in terms of the density matrix formalism

were developed by Mathur, Tang and Harper (Mathur et al., 1970). These works are

particularly important to the description of coherent photon-atom interactions such

as SIT and EIT.

Slow Light Mechanisms

Previous discussion describe pulse delay in the linear Beer’s-law regime. Here

pulse delays are the predicted consequence of Maxwell’s equations and the Kramers-

Kronig relations. There are several other related methods to achieve slow light (or

fast light) such as saturation delay, self-induced transparency and electromagnetically-

induced transparency. It is possible for these pulse delay mechanisms to be observed

simultaneously in certain situations and determination of the cause of the observed

delay is often difficult. This section describes the history of slow light research and

details the various delay mechanisms.
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Linear Dispersion

Linear dispersion delay occurs at pulse intensities well below the saturation inten-

sity. In this region the pulse amplitude transmitted through the absorbing medium

follows Beer’s law attenuation and the observed pulse delay is not intensity dependent.

Historically initial studies in pulse propagation appeared in the context of nonlinear

effects primarily self-induced transparency, discussed in a later section, where the

observation of linear and nonlinear effects can be blended within a single medium

(Khurgin and Tucker, 2009).

Demonstration of optical pulse delay is a direct result of Kramers-Kronig relations

and discussed in the theoretical predictions of Garrett and McCumber (Garrett and

McCumber, 1970). Initial experiments sought to demonstrate superluminal group

velocity in a gain medium. One of the first demonstrations of semi-classical group

velocity and the Garret McCumber predictions appear as a measure of pulse velocity

greater than the speed of light in vacuum c in a neon absorption cell within a He-Ne

laser cavity (Faxvog et al., 1970). Theoretical discussion of these results is reported

in a series of works by Casperson and Yariv (Casperson and Yariv, 1970, 1971).

One of the first studies in linear slow light pulse propagation appears in the works

of Grischkowsky in 1973 (Grischkowsky, 1973) in relation to earlier reports of SIT

(McCall and Hahn, 1967; Faxvog et al., 1970; Slusher and Gibbs, 1972) in that far from

resonance pulses can exhibit long linear delays outside the SIT region (Khurgin and

Tucker, 2009). Grischkowsky reported difference in delays of circularly polarized light

in the Zeeman-split rubidium 2P1/2 line (Grischkowsky, 1973). Short pulses of narrow

linewidth low-intensity near the resonant line in the dilute alkali vapor were produced

group velocities as low as 1/14c. Grischkowsky contends that most of the energy in

the propagating wave was contained in the vapor as coherent atomic excitation and

quantitatively explained using adiabatic following, in which “pseudomoments of the
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atoms remain aligned along the effective field of the laser” (Grischkowsky, 1973).

Linear dispersion pulse delays as well as advancement (superluminal group veloc-

ity) were demonstrated by Chu and Wong (Chu and Wong, 1982a,b) in an epitaxially

grown GaP:N crystal. Pulse propagation in dispersion delay gained experimental

notoriety when Tanaka et al. (Tanaka et al., 2003) documented the observation of

negative group delay, or superluminal velocity, in rubidium vapor D1 transition using

“conventional” group velocity.

At the same time Agarwal and Dey proposed a slow light method using linear

dispersion delay in a Doppler-broadened saturation spectroscopy system burning a

spectral hole in the absorbing medium (Agarwal and Dey, 2003) similar to the EIT-

related work in a ruby crystal by Bigelow, Lepeshkin and Boyd (Bigelow et al., 2003).

The next series of significant slow light research came from the Howell group

at the University of Rochester, NY. As a much simpler nearly passive alternative to

EIT, using the atomic doublet structure (rubidium D2 transition) as means to control

velocity of light through the medium observed in 2006 by Camacho et al. (Camacho

et al., 2006a). Camacho outlines several desirable criteria for slow light to be used

in communication applications. It can be argued that dispersion delay has several

advantages over more complex EIT systems. One such potential application was

realized with wide-band tunable optical delay using slow light in the two-absorption

atomic resonance setup (cesium vapor D2 transition) by Camacho (Camacho et al.,

2007) and all-optical delay (Camacho et al., 2007).

Saturation Delay

For pulse intensities above the linear (Beer’s law) region as the intensity is compa-

rable to the saturation intensity a pulse distortion delay effect is apparent. Saturation

delay is created as an incoherent delay effect which occurs when the leading edge of

the pulse is sufficiently intense such that half of the atoms in a two-level absorber
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are excited to the upper level and the absorption line becomes saturated (Allen and

Eberly, 1987). The rest of the pulse is then transmitted completely unattenuated as if

the absorbing medium were transparent. The pulse appears to undergo delay because

the transmitted “center of mass” of the pulse is moved back in time relative to the

initial pulse. This is a frequency dependent effect such that saturation intensity is

lowest at the absorption feature resonance peak. Saturation delay is necessarily inten-

sity dependent producing pulse distortion and delay that increases to a maximum and

decreases with further increase in intensity (Allen and Eberly, 1987). Pulses capable

of bleaching the medium are transmitted with little distortion or attenuation.

Self-Induced Transparency

Self-induced transparency (SIT) is a coherent delay effect described theoretically

and reported experimentally by McCall and Hahn (McCall and Hahn, 1967, 1969).

The SIT delay is attributed to energy leaving the pulse, coherently exciting the atoms

of the absorbing medium and energy is coherently redeposited into the trailing edge

of the pulse with no loss of signal amplitude. Delay is produced by the temporary

storage of the pulse energy in the absorber (Allen and Eberly, 1987).

McCall and Hahn first proposed the theory of self-induced transparency as the

coherent coupling of a coherent pulse and dipole moment of the atomic medium and

provided experimental results in a series of cooled ruby lasers (McCall and Hahn,

1967). Nonlinear transmission of laser light is observed such that low-intensity pulses

are highly attenuated and high-intensity light are transmitted unattenuated, which is

very similar to the delay and pulse attenuation results observed with pure incoherent

saturation delay. McCall and Hahn introduce the pulse area theorem (McCall and

Hahn, 1967, 1969) where the pulse area Θ is a dimensionless parameter defined by
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(Fox, 2006)

Θ =

∣∣∣∣µ12

~

∫ +∞

−∞
E0(t)dt

∣∣∣∣ . (59)

For pulses of area equal to π is called a π-pulse. An atomic system coherently excited

by a π-pulse will have the atoms in the excited state following the pulse, but returned

to the ground state following a 2π-pulse (Fox, 2006; Allen and Eberly, 1987). The-

oretically for pulse areas above 3π the atoms are coherently excited and deexcited

more than once. The resulting pulse breakup is observed for such nπ-pulses by Mc-

Call and Hahn (McCall and Hahn, 1967) and is presented as evidence of SIT (Allen

and Eberly, 1987).

Patel and Slusher were first to present SIT in a gaseous medium where delays of

0.2 µs were observed in SF6 (Patel and Slusher, 1967). They also noted pulse shap-

ing effects where the pulse become more symmetric, the pulse tail showed increased

intensity, and delay was intensity dependent. The results of the experiment were ques-

tioned regarding the degeneracy of SF6 by Rhodes, Szöke and Javan (Rhodes et al.,

1968). Courtens and Szöke demonstrated that in the limit far from the resonsant

SIT peak the pulse delay follows linear dispersion theory (Allen and Eberly, 1987;

Courtens and Szöke, 1968). Bradley, Gale and Smith reported SIT in potassium va-

por (Bradley et al., 1970) using tunable cavity and a streak camera to visualize the

resulting pulse delay. In 1972 as a response to previous degeneracy criticism Slusher

and Gibbs reported SIT in a rubidium vapor made nondegenerate in a tuned mag-

netic field (Slusher and Gibbs, 1972) where nπ pulse breakup appeared in agreement

with McCall and Hahn pulse area theory.

Results presented in the present work do not intentionally seek pulse length-

intensity combinations which produce pulse area Θ = n2π in which SIT is observed.
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Electromagnetically-Induced Transparency

The final slow light mechanism to be discussed is electromagnetically-induced

transparency (EIT). In EIT laser-induced coherence between atomic states leads to

quantum interference between excitation pathways producing a narrow transmission

window at an absorption resonance (Fleischhauer et al., 2005) which has proven as

an important slow light (and stored light) mechanism due to the enhanced nonlinear

response in the narrow transparency region of steep dispersion. Typical EIT schemes

require a three-level atomic system where electronic dipole selection rules dictate that

two pairs of the levels are dipole coupled while the third transition is dipole forbidden

(Marangos, 1998). Review of EIT systems widely available in the works of Marangos

(Marangos, 1998), Fleischhauer, Imamoğlu and Marangos (Fleischhauer et al., 2005),

Boyd (Boyd, 2008; Noginov et al., 2009), Boyd and Gauthier (Boyd and Gauthier,

2002), Chiao and Milonni (Chiao and Milonni, 2002) as well as Milonni (Milonni,

2002, 2005).

Harris, Field and Imamoğlu coined the term EIT in 1990 (Harris et al., 1990)

theoretically predicting the coherent EIT effect. The following year Boller, Imamoğlu

and Harris demonstrated EIT in a Sr heat pipe. In 1999 extreme slow group velocities

of 17 m s−1 were achieved using EIT in a Bose-Einstein condensate of sodium atoms

(Hau et al., 1999; Hau, 2001).

The next milestone experimental measurement of dispersion delay comes in 1995

from the work of Xiao et al. (Xiao et al., 1995) using a gas of hot rubidium atoms

tuned near the 5S1/2 → 5P3/2 in a Mach-Zehnder (MZ) interferometer. They did not

directly measure the group velocity, but calculated the velocity via measurement of

the phase shift (Boyd and Gauthier, 2002) reaching a group velocity of c/13.2 with

the coupling laser in a ladder-type EIT system. Also that year Kasapi et al. reported

Λ-type EIT group velocity of c/165 ≈ 1.817× 106 m s−1 in a 208Pb vapor(Kasapi
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et al., 1995).

Alkali-metal vapors have played a central role in EIT slow light research. Zibrov et

al. (Zibrov et al., 1996) demonstrated enhanced index of refraction without absorption

in Rb D1.

Group velocities as low as 8 m s−1 inferred in rubidium experiment in 1999 by

Budker et al. (Budker et al., 1999). Hot 360 K 87Rb vapors produced group velocities

of 90 m s−1 (Kash et al., 1999) using a Λ-type EIT scheme.

Also in 2003, Kim et al. (Kim et al., 2003) arbitrarily changed the group velocity

from subluminal to superluminal by changing the coupling laser intensity, in an EIT-

like setup, with vg from c/3000 to −c/14400. At this point, experiments focused

primarily on the measurement of pulse propagation phenomena in the vicinity of a

single resonant absorption line.

In a 2007 analytical paper, Shi et al. (Shi et al., 2007) explored theoretical use of

dispersion delay systems in MZ interferometer system with slow light cell, allowing

for tunable optical path length (OPL) in MZ system. Citing recent experimental

results, Shi compared possible SL interferometry applications (Shi et al., 2007).

It has been demonstrated by Vudyasetu (Vudyasetu et al., 2008) that transverse

images can be slowed and even stored with little loss of coherence. The Howell

group again displayed tunable delay of the image using temperature variation in

rubidium vapor dispersion delay cell as well as using pump/probe means to control

the absorption and group delay.

Following the University of Rochester work, analytic study of dispersion delay

and limitations Shakhmuratov and Odeurs (Shakhmuratov and Odeurs, 2008) refer to

Camacho (Camacho et al., 2006a) for criteria to use dispersion delay in communication

application. Shakhmuratov cites low group velocity without (EIT) driving fields for

low-frequency coherence.

Just as linear dispersion, saturation delay and SIT can appear in a single sys-
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tem, theoretical description of a combined SIT and EIT system. Scully et al. report

theoretical analysis of SIT as a coupling field in a V-type EIT system called “mixed

induced transparency” (MIT) (Scully et al., 2001).

Electromagnetically-induced transparency is typically evident in systems where

the Rabi frequency ΩR (Loudon, 2000)

ΩR ≡ |µ12E0~ | � γ (60)

is much greater than the homogeneous broadening γ (Boyd and Gauthier, 2002). In

the present work pump intensities are such that EIT was not observed.

Scope of research

This work seeks to develop a linear dispersion pulse delay prediction from a full-

frequency hyperfine structure model with Doppler-broadened Voigt profile lineshape

in cesium and rubidium. This pulse delay model will compared to observed pulse

delay and non-Voigt double-Lorentzian approximation model predictions.

Once a reliable Doppler-broadened model has been developed, modification of the

absorption profile will be attempted using a second laser to depopulate the ground

state and observe delays in a narrow spectral hole in the absorption profile in a

modified sub-Doppler spectroscopy system.

Finally complete theoretical description of the system is still being developed

in order to optimize the lasers for scaling to high output power. Optimization of a

DPAL system depends on accurate pressure-broadening models to properly match the

atomic absorption profile to the broadband diode pump source. There is currently no

validated bleach wave model of an operating DPAL system. Transverse absorption

spectroscopy setup is used in this work to partially examine the temporal dynamics

of the bleached wave of a pulsed alkali-metal vapor system.
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III. Kramers-Kronig Delay Calculation

This chapter originally appeared in SPIE Advances in Slow and Fast Light III

(Anderson and Perram, 2010b).

In this manuscript predicted delay is developed for a pulse propagating
through an atomic vapor. Theoretical description for pulse delay is devel-
oped from atomic absorption coefficient with hyperfine structure and Voigt
lineshape. Predicted delays are in agreement with observed delays in a
cesium vapor cell at various temperatures between 78.9 ◦C and 137.2 ◦C.

Introduction

A number of applications have been conceived for light with slow group velocities,

including optical delay lines, interferometry for remote sensing, and quantum informa-

tion. Electromagnetically induced transparency (EIT) is a well understood method

often used to produce slow light (Marangos, 1998; Milonni, 2005; Fleischhauer et al.,

2005). Alternatively optical delays in the vicinity of atomic resonance transitions

have also been demonstrated (Grischkowsky, 1973; Tanaka et al., 2003; Agarwal and

Dey, 2003; Camacho et al., 2006a). One of the early slow light experiments demon-

strated group velocities of c/14 using Zeeman splitting of the D1 line of rubidium

(Grischkowsky, 1973). Agarwal and Dey used an absorption spectroscopy setup to

observe delay (Agarwal and Dey, 2003). More recently, all-optical delays of many

times the pulse width have been demonstrated in the double Lorentzian structure of

hot alkali vapors (Camacho et al., 2007) where delays of 1.6 GHz-bandwidth pulse by

25 pulse widths, or 7 ns, have also been observed using the hyperfine structure of the

Cs D2 line. Delays of up to 106 ns have been achieved using the hyperfine splitting of

the D2 lines in 85Rb by tuning the temperature of four 10 cm cells to 140 ◦C (Cama-

cho et al., 2006a). Indeed, double Lorentzian systems provide large bandwidth, large
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delays, and minimal absorption and dispersion. Rapid tuning of the delays has also

been demonstrated by varying the modulation frequency in a two-laser, pump-probe

configuration (Camacho et al., 2006b).

Precise absorption models which fully account for the hyperfine structure can be

computationally expensive. Therefore it is often advantageous to approximate the

absorption coefficient or complex index of refraction as the summation of Lorentzian

lineshapes at a pair of resonant frequencies. Lorentzian absorption lineshapes pro-

vide adequate predictions for cases with homogeneous broadening or when the laser

is detuned from resonance by an order of magnitude greater then the inhomogeneous

linewidth (Camacho et al., 2007). At moderate temperatures (above 100 ◦C) the

Doppler linewidth for the cesium D2 line approaches 0.5 GHz establishing a significant

limit on applicability such that Doppler-broadened lineshapes should be considered.

Furthermore, tuning of the delays by varying laser frequency is largely unstudied. In

the present work we develop an absorption model, calculate predicted pulse delay and

compare delay measurements to predicted delays. Experimental results are in agree-

ment with prediction models using a Voigt lineshape approximation of the broadened

absorption with full D2 hyperfine structure.

Absorption Coefficient

Frequency dependent variations in the index of refraction near resonant absorp-

tion transitions give rise to dramatic changes in group velocity. Index of refraction

is related to the absorption coefficient. When absorption is known through measure-

ment or calculation, delay can be predicted. A rapid accurate numerical absorption

model may prove useful for applications needing pulse delay predictions over a wide

frequency range in the neighborhood of resonant atomic transitions.

The absorption is a function of frequency ν as well as temperature T . Frequency
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dependence is fundamental to photon-atom interaction in that probability of absorp-

tion. Temperature dependence arises from both Doppler broadening and temperature

dependent number density of the atomic vapor.

We seek the absorption coefficient from the usual definition of absorbance

Aλ = − ln(I/I0) = α(ν, T )l = σtot(ν, T )n(T )l (61)

where l is the cell length, α is absorption coefficient, σ is the cross section, and n

is the number density. To predict the pulse delay due to absorption, the absorption

coefficient α(ν, T ) = σtot(ν, T )n(T ) must be determined.

The total nuclear angular momentum I for cesium is 7/2. For each hyperfine

energy level, the total atomic angular momentum, F, is given by F = J + I, whose

magnitude takes on the values, | J − I | 6 F 6 | J + I |. Transitions follow the

selection rule ∆F = ±1, 0. In this paper the notation used for the D2 absorption

transitions follows spectroscopy notation F ′′ → F ′, where F ′′ refers a hyperfine level

from the ground state S1/2 and F ′ refers to a hyperfine level in the P3/2 level.

The cross section σ for a single hyperfine transition can be calculated using

σF ′′F ′(ν, T ) =
2π2

3ε0hc
µ2
F ′′F ′ ν g(ν − νF ′′F ′) (62)

where µ2
F ′′F ′ is the transition dipole moment such that

µ2
F ′′F ′ = SF ′′F ′ | 〈J ′′ | | e r | | J ′〉 |2 = SF ′′F ′ e

2D2
J ′′J ′ . (63)

The lineshape function g(ν − ν0) is discussed later in this paper.

Strength of the photon-atom interaction is characterized by the dipole matrix

elements. Relative strength of each transition can be expressed as a reduced matrix

element and a relative strength factor, Wigner 6-j symbol, for each F ′′ → F ′ transition
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such that

SF ′′F ′ = (2F ′ + 1)(2J ′′ + 1)

J
′′ J ′ 1

F ′ F ′′ I


2

(64)

The relative strength factor SF ′′F ′ follows the summation rule
∑

F ′ SF ′′F ′ = 1. The

frequency for each hyperfine F ′′ → F ′ transition is calculated (Arimondo et al., 1977;

Gerginov et al., 2003). Cesium D2 properties are summarized in Table 1.

Table 1. Summary of hyperfine transition frequencies and relative line
strengths cesium D2.

Transition ν0F ′′F ′
∗ Strength Factor

F ′′ → F ′ (MHz) SF ′′F ′

3→ 2 4831.14 5/14
3→ 3 4982.37 3/8
3→ 4 5183.65 15/56
4→ 3 -4210.26 7/72
4→ 4 -4008.98 7/24
4→ 5 -3757.89 11/18

∗ Calculated from references (Arimondo et al., 1977; Gerginov et al., 2003)

In solving for the transition dipole moment (Loudon, 2000),

1

τ
=

ω3
0

3πε0~c3

gJ ′′

gJ ′
e2D2

J ′′J ′ (65)

where gi the J degeneracy such that gi = 2Ji + 1, so that

µ2
F ′′F ′ =

3ε0hc
3

16π3ν3
0

(
2J ′ + 1

2J ′′ + 1

)
SF ′′F ′

1

τ
. (66)

Combining Equation (62) and Equation (66) the cross section can be calculated

σF ′′F ′(ν, T ) =
c2

8π

ν

ν3
0

(
2J ′ + 1

2J ′′ + 1

)
SF ′′F ′

1

τ
g(ν − ν0) (67)

For the cesium D2 transitions, J ′′ = 1/2 and J ′ = 3/2 so that Equation (67) can be
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simplified to

σF ′′F ′(ν, T ) = SF ′′F ′
1

τ

c2

4π

ν

ν3
0

g(ν − ν0) (68)

The relative ground state population must also be considered when calculating absorp-

tion for each hyperfine F ′′ → F ′. Assuming the S1/2 population follows a Boltzmann

distribution as a function of temperature and the ground state hyperfine energies, the

relative population is given by

fF ′′ =
gF ′′e

−βEF ′′∑
i gie

βEi
(69)

where β = 1/kBT and kB is the Boltzmann constant. The total absorption cross

section σtot is the sum each F ′′ → F ′ cross section.

σtot(ν, T ) =
∑
F ′′,F ′

fF ′′ SF ′′F ′
1

τ

c2

4π

ν

ν3
0

g(ν − ν0) (70)

Lorentzian lineshapes are often used to approximate atomic transitions for Doppler-

free spectroscopic techniques. Close to the absorption peaks or when inhomogeneous

broadening effects are considerable, a Voigt profile should be used for more accurate

depiction of the atomic absorption. Thus the lineshape itself is both frequency and

temperature dependent. The Voigt profile is a convolution of both homogeneous and

inhomogeneous broadening lineshapes, such that

gV (ν − ν0) =

∫ ∞
−∞

gI(ν
′
0 − ν0)gH(ν − ν ′0)dν ′0 (71)

where gI(ν
′
0− ν0) is the inhomogeneous lineshape and gH(ν− ν ′0) is the homogeneous
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lineshape given by the formulas (Bernath, 2005)

gI(ν − ν0) =
2

∆νG

√
ln(2)

π
exp

[
−4 ln 2

(
ν − ν0

∆νG

)2
]

(72)

gH(ν − ν0) =
∆νH/2π

(∆νH/2)2 + (ν − ν0)2
(73)

in terms of the Gaussian (inhomogeneous) full width at half maximum (FWHM) ∆νG

and the Lorentzian (homogeneous) FWHM ∆νL .

A useful algorithm for the Voigt lineshape (Thompson, 1993) is

V (u, a) = Re
[
exp(z2)erfc(z)

]
(74)

where

z = a+ iu (75)

a =
√

ln 2
∆νL
∆νG

(76)

u = 2
√

ln 2
(ν − ν0)

∆νG
. (77)

Three broadening mechanisms were included in this model, Doppler broadening, life-

time broadening and buffer gas effects. Lifetime, or natural broadening, and buffer

gas effects are homogeneous broadening effects. Doppler broadening comes from the

Maxwell-Boltzmann velocity distribution as a function of the temperature T and the

atomic mass M . The Doppler FWHM is given by the formula

∆νG = ν0

(
8kBT ln 2

Mc2

)1/2

. (78)

Homogeneous broadening from natural broadening and pressure broadening is given
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by the formula

∆νH =
1

2π

(
1

τr

)
+
∑
i

γi

(
Tsys
Tdata

)1/2

Pi (79)

where γi is the pressure broadening constant and Pi is the pressure for each buffer

gas species. The pressure broadening constants are temperature dependent and are

scaled by the temperature of the system Tsys and the temperature at which the values

were measured Tdata. Buffer gases can both broaden the lineshape profile and cause

a frequency shift as a function of buffer gas pressure. Included in the alkali models

are helium, neon, nitrogen and ethane (Rotondaro and Perram, 1997). For simplicity

model predictions and data are shown without pressure broadened lineshapes so that

the only source of homogeneous broadening is natural broadening.

Vapor pressure equations for cesium used in this model are given by the “precise

equations” from Alcock et al. (Alcock et al., 1984). In general the vapor pressure is

an exponential function PV (T ). Assuming the alkali vapor acts as an ideal gas we

can determine the number density

PV = NkBT → n(T ) =
Pv(T )

kBT
(80)

The model calculated absorption coefficient plots are shown in Figure 2 for 78.9 ◦C,

102.5 ◦C and 137.2 ◦C.

Predicted Delay

Once the absorption coefficient is known the predicted delay for a pulse propagat-

ing through the alkali medium is determined. The absorption coefficient is related to

the imaginary part of the complex index of refraction n = nR + inI, by the equation

nI =
c

4πν
α(ν). (81)
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Figure 2. Simulation output for cesium D2 absorption coefficient (cm−1)
at various cell temperatures detuned ±10 GHz from the central D2 tran-
sition frequency 351.7257185 THz.

Using the familiar Kramers-Kronig relations

Re [εr(ν)] = 1 +
2

π
P

∫ ∞
0

ξ Im [εr(ξ)]

ξ2 − ν2
dξ (82)

Im [εr(ν)] = −2ν

π
P

∫ ∞
0

Re [εr(ξ)]− 1

ξ2 − ν2
dξ (83)

we can connect the complex index of refraction or the absorption coefficient to the

real index of refraction. The symbol P represents the Cauchy principal value of the

integral. Combining Equation 81 and Equation 82 yields an expression for the real

index of refraction in terms of the absorption coefficient

nR(ν) = 1 +
c

2π2
P

∫ ∞
0

α(ξ)

ξ2 − ν2
dξ. (84)

The calculated real index of refraction for Cs D2 is shown in Figure 3.

The group velocity shown in Figure 4 is found from the real index of refraction
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Figure 3. Calculated real index of refraction for cesium D2 at vari-
ous cell temperatures detuned ±10 GHz from the central D2 transition
frequency.

with the equation,

vg =
c

nR + ν dnR

dν

. (85)

Time for the pulse to transit the alkali cell is calculated by t = l/vg and shown in

Figure 5 for a 5 cm alkali cell.

Delay of a signal through the cell is determined by comparing the transit time of a

signal frequency near the absorption features with transit time of a signal far detuned

from the peaks. The lead FWHM point on the temporal pulse is used as a reference

point for determining delay. Tunable delays are achieved by selecting various signal

frequencies across the absorption spectrum. Near the absorption peaks pulses realize

the greatest group delay.
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Figure 4. Calculated group velocity (units of c) for cesium D2 at vari-
ous cell temperatures detuned ±10 GHz from the central D2 transition
frequency.

Figure 5. Calculated delay (ns) for cesium D2 at various cell tempera-
tures detuned ±10 GHz from the central D2 transition frequency.
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Figure 6. Experimental setup for delay measurements.

Experimental Setup

The experimental apparatus for delay measurements shown in Figure 6 is similar

to the absorption spectroscopy setup of Agarwal and Dey (Agarwal and Dey, 2003).

A 25 mW tunable diode laser with less than 300 kHz linewidth is tuned across the

Cs D2 transition. The 1.5 mm diameter laser beam is directed through an optical

isolator and a pellicle beam splitter to a fiber coupled Mach-Zehnder interferometric

lithium niobate (LiNbO3) electro-optic intensity modulator (EOM). A pulse signal

generator drives the EOM to create a 10 ns FWHM pulse with 1 kHz repetition rate.

Part of the beam is sent to a Bristol wavemeter with 0.003 cm−1 accuracy for

frequency reference. The modulated pulse propagates through a 5 cm long, low-

pressure alkali cell enclosed in a machined aluminum heater block maintained at

a constant temperature between 78.9 ◦C to 137.2 ◦C using a temperature controller

system.

The pulse delay is monitored by a silicon photodiode detector with a 1 ns response

time. At a fixed alkali temperature, the laser source is tuned across the cesium

D2 spectrum. At each sample frequency the recorded time-dependent pulse is a
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15 s average. This was repeated for approximately 90 frequencies ±25 GHz from the

central D2 frequency.

Results

Pulse delay data were recorded in the range from T = 78.9 ◦C to 137.2 ◦C. The

delay increases and transmitted intensity decreases at the resonant frequencies and

the hyperfine splitting of the ground 2S1/2(F ′′ = 3 and 4) levels is clearly evident.

At the two peaks of the absorption feature, the transmitted pulse intensities were

less than five standard deviations (arbitrary limit) above the background, making

accurate determination of the delay difficult. Indeed, the optical depth at line center

of the transitions originating from F ′′ = 3 at T = 114 ◦C is ` = 1/σ(ν0)n = 0.02 mm.

Delays were defined by the leading edge at half the peak intensity.

Pulse delay predicted with this model and measured pulse delays are shown in

Figure 7. Predicted delays closely match calculations from the absorption model

described previously in this manuscript.

The delays are tuned from 0 ns to 30 ns, up to 3 pulse widths in a single pass

through a 5 cm cell, for the T = 114.0 ◦C data. The present results compare favorably

with the previously observed delay of about 7 ns at zero detuning in a 10 cm cell at

120 ◦C (Camacho et al., 2007).

Conclusion

Tunable slow light delays are demonstrated through frequency modulation across

the hyperfine doublet structure of an alkali metal vapor. Delays of 0 ns to 37 ns have

been observed in a single pass through a 5 cm cesium cell at 137.2 ◦C by detuning

from resonance ±25 GHz. Predicted delays closely match calculations from an absorp-

tion profile model including Voigt lineshapes and full hyperfine structure. Frequency
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Figure 7. Pulse delay measurements in 5-cm cesium cell at 78.9 ◦C,
102.5 ◦C and 137.2 ◦C with predicted delay calculated from simulation
output.

dependence of the delays are sensitive to vapor pressure and Doppler broadening,

constraining vapor temperature uncertainties to about 0.1 ◦C.
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IV. Delay Prediction

This chapter originally appeared in Physical Review A 81(3)033842 (Anderson and

Perram, 2010a).

The frequency dependence of optical delays in both the wings and core
of the cesium D2 transition have been observed and modeled with a Voigt
lineshape convolved with the six hyperfine components. Tunable delays of
0-37 ns are achieved by tuning the laser frequency through resonance at
various vapor pressures of 0.15-5.28 mTorr.

Introduction

A number of applications have been envisioned for light with slow group veloc-

ities, including optical delay lines, interferometry for remote sensing, and quantum

information. Electromagnetically induced transparency (EIT) is often used to pro-

duce slow light (Fleischhauer et al., 2005). However, optical delays in the vicinity

of atomic resonance transitions have also been demonstrated (Tanaka et al., 2003;

Grischkowsky, 1973; Camacho et al., 2006a). One of the early slow light experiments

demonstrated group velocities of c/14 using Zeeman splitting of the D1 line of ru-

bidium (Grischkowsky, 1973). More recently, all-optical delays of many times the

pulse width have been demonstrated in the double Lorentzian structure of hot alkali

vapors (Camacho et al., 2007). Delays of up to 106 ns have been achieved using the

hyperfine splitting of the D2 lines in 85Rb by tuning the temperature of four 10-cm

cells to 140 ◦C. Delays of 1.6-GHz-bandwidth pulse by 25 pulse widths, or 7 ns, have

also been observed using the hyperfine structure of the Cs D2 line. Indeed, the double

Lorentzian systems provide large bandwidth, large delays, and minimal absorption

and dispersion. A more rapid tuning of the delays has also been demonstrated by

40



www.manaraa.com

Figure 8. Experimental setup for delay measurements.

varying the modulation frequency in a two laser, pump-probe configuration (Camacho

et al., 2006b).

Previous work approximates the complex index of refraction as the summation

of Lorentzian lineshapes at a pair of resonant frequencies. Lorentzian absorption

lineshapes provide adequate predictions for cases with homogeneous broadening or

when the laser is detuned from resonance by an order of magnitude greater then

the inhomogeneous linewidth (Camacho et al., 2007). At moderate temperatures the

Doppler linewidth for the cesium D2 line is almost 0.5 GHz establishing a significant

limit on applicability. Furthermore, tuning of the delays by varying laser frequency is

largely unstudied. In the present work we report on delay measurements across the

resonances and show the results are in agreement with Voigt lineshapes including the

full hyperfine structure.

Experimental Setup

The experimental apparatus for delay measurements is shown in Figure 6.

A 20-mW tunable diode laser with less than 300 kHz linewidth is tuned across the

Cs D2 transition. The 1.5-mm diameter laser beam is directed through an optical
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Figure 9. Amplitude modulated 10-ns FWHM laser pulses transmitted
through a 5-cm Cs cell at 114.0 ◦C (a) detuned by 24.9 GHz and (b)
detuned by 6.3 GHz. The FWHM for each pulse (solid lines) and pre-
trigger noise levels (dashed line) are illustrated.

isolator and a pellicle beam splitter to a fiber coupled Mach-Zehnder interferometric

lithium niobate (LiNbO3) electro-optic intensity modulator. A pulse signal generator

drives the amplitude modulator to create a 10 ns full-width half maximum (FWHM)

pulse with 1 kHz repetition rate as shown in Figure 9.

Part of the beam is sent to a wavemeter with 0.003 cm−1 accuracy for frequency

reference. The modulated pulse propagates through a 5-cm-long, low-pressure al-

kali cell enclosed in a machined aluminum heater block maintained at a constant

temperature between 78.9 ◦C to 137.2 ◦C using a temperature controller system.

The pulse delay is monitored by a silicon photodiode detector with a 1 ns response

time. At a fixed alkali temperature, the laser source is tuned across the cesium D2

spectrum. At each sample frequency the recorded time-dependent pulse is a 15 s

average. This was repeated for approximately 90 frequencies±25GHz from the central

D2 frequency.
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Figure 10. Frequency dependence of transmitted pulses delays through
114.0 ◦C 5-cm cesium cell.

Results

The observed transmitted pulses for a series of laser wavelengths at T = 114.0 ◦C

are illustrated in Figure 10. Similar data were recorded at T = 78.9 ◦C to 137.2 ◦C.

The delay increases and transmitted intensity decreases at the resonant frequencies

and the hyperfine splitting of the ground 2S1/2(F ′′ = 3 and 4) levels is clearly evident.

At the two peaks of the absorption feature, the transmitted pulse intensities were less

than five standard deviations above the background, making accurate determination

of the delay difficult. Indeed, the optical depth at line center of the transitions

originating from F ′′ = 3 at T = 114 ◦C is ` = 1/σ(ν0)n = 0.02 mm. Delays were

defined by the leading edge at half the peak intensity and are illustrated for T =

78.9 ◦C and 114.0 ◦C in Figure 11.

The delays are tuned from 0 ns to 30 ns, up to 3 pulse widths in a single pass

through a 5 cm cell, for the T = 114.0 ◦C data. The present results compare favorably

with the previously observed delay of about 7 ns at zero detuning in a 10-cm cell at
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Figure 11. Cesium D2 delay data for 78.9 ◦C (open circles) and 114.0 ◦C
(open triangles). Predicted delays (solid lines) are calculated using the
full spectrum hyperfine structure absorption model. Maximum error in
the delay measurement is ±0.15 ns while the average error is ±0.03 ns.

120 ◦C (Camacho et al., 2007).

The pulse delays are directly related to the absorption spectrum. Figure 12 il-

lustrates a diode laser absorption spectrum of the Cs D2 hyperfine split line at low

pressure.

The absorption is readily computed from the hyperfine splittings, line strengths,

and broadened lineshape (Pitz and Perram, 2008). The absorbance A at a given cell

temperature T and length l is related to the effective absorption cross section σ and

number density n by

A = − ln(I/I0) = α(ν, T )l = σtot(ν, T )n(T )l (86)

where each of the six hyperfine components, F ′′ = 3− 4 and F ′ = 2− 5, contributes
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Figure 12. Cesium D2 absorbance for a 2-cm cesium cell at 25 ◦C at low
pressure (gray line), model prediction for total absorbance (solid black
line), and model-simulated absorbance for individual hyperfine transi-
tions (dashed black lines).

to the cross section such that

σtot =
∑
F ′′,F ′

fF ′′SF ′′F ′
1

τ

c2

4π

ν

ν0F ′′F ′
3
gV (ν − ν0F ′′F ′

). (87)

The frequencies ν0F ′′F ′
and the line strengths SF ′′F ′ of each hyperfine component are

summarized in Table 2.

Radiative lifetime for the Cs D2 line is τ = 30.32(5) ns (Amini and Gould, 2003).

The statistical distribution of the populations in the two hyperfine split 62S1/2 levels

is

fF ′′ =
(2F ′′ + 1)e−

∆E
kT

7 + 9e−
∆E
kT

(88)

where k is Boltzmann’s constant and ∆E = 9.192 631 770 GHz is the energy difference

of the hyperfine levels of the Cs 6 2S1/2 ground state.

The Voigt profile gV (ν − ν0) is a convolution of both homogeneous and inhomo-
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Table 2. Summary of cesium D2 hyperfine transition frequencies and
relative line strengths.

Transition ν0F ′′F ′
† Strength Factor

F ′′ → F ′ (MHz) SF ′′F ′

3→ 2 4831.14 5/14
3→ 3 4982.37 3/8
3→ 4 5183.65 15/56
4→ 3 -4210.26 7/72
4→ 4 -4008.98 7/24
4→ 5 -3757.89 11/18

†Calculated from references (Arimondo et al., 1977; Gerginov et al., 2003)

geneous broadening lineshapes and is approximated by (Thompson, 1993)

gV (u, a) = Re[exp(z2)erfc(z)] (89)

where

z = a+ iu (90)

a =
√

ln 2
∆νH
∆νD

(91)

u = 2
√

ln 2
(ν − ν0)2

∆νD
(92)

The inhomogeneous Doppler width, ∆νD ≈ 0.43 GHz at 114 ◦C, is relatively large

compared to the homogeneous broadening. The cell contains no buffer gas and the

alkali pressure is low, so that the homogeneous broadening approaches the natural

limit of ∆νH = 5.2 MHz.

The temperature dependence of the cesium vapor pressures P are derived from

Alcock et al. (Alcock et al., 1984) and the corresponding concentrations n = P/kT

range from 4.08× 1012 to 1.24× 1014 atoms/cm3 for T = 78.9 ◦C to 137.2 ◦C. The

modeled absorption from Equations (86) and (87) compares very well with the ob-
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served spectrum, as illustrated in Figure 12. The only adjustable parameter employed

is a small correction to the thermocouple temperatures. The reported temperatures

are determined by matching the observed and predicted absorption or delays. For

example, the thermocouple temperatures were taken at a position not touching the

heater element, in contact with only the alkali cell and exposed to room temperature

air within the laboratory. For data reported at 114 ◦C, thermocouples read 113.7 ◦C

and hyperfine model temperature was adjusted until the observed delay best fit model

predicted values within 0.1 ◦C. The hyperfine splitting of the excited state is smaller

than the Doppler width as shown in Figure 12.

The delays are readily predicted from the absorption coefficient by employing the

Kramers-Kronig relationship between the real and imaginary portions of the index of

refraction n = nR + inI ,

nR = 1 +
1

2π
P

∫ ∞
0

ξnI(ξ)

ξ2 − ν2
dξ (93)

where P represents the Cauchy principal value of the integral. The absorption is

related to the imaginary part of the index

α(ν) =
4π

c
ν nI(ν). (94)

Thus the real portion of the index is related to Equations (86) and (87) by

nR = 1 +
c

2π2
P

∫ ∞
0

α(ξ)

ξ2 − ν2
dξ. (95)

Finally, the observed delays are predicted as td = l/vg, where the group velocity is

defined as

vg =
c

nR + ν dnR

dν

. (96)
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Figure 13. Comparison of group velocity at 114 ◦C computed from the
hyperfine model of Equation (87) (solid line) and double Lorentzian index
of refraction approximation (dashed line). Percent difference between
models is shown for comparison.

These predicted delays are overlaid with the experimental observations in Figure 11.

The agreement is excellent for all frequencies and temperatures.

The delays are often computed assuming two Lorentzian profiles split by the

ground state hyperfine structure (Camacho et al., 2007, 2006a, 2007; Shi et al., 2007).

This approximation is adequate when the laser is detuned from the resonances by an

order of magnitude greater than the inhomogeneous linewidth (Camacho et al., 2007).

However, significant differences in the frequency dependence of the predicted group

velocities are observed when the two approaches are compared, as seen in Figure 13.

For the two Lorentzian model of the index of refraction (Camacho et al., 2007)

n(δ) = 1− A
2

(
g1

δ − ω1 + iγ
+

g2

δ − ω2 + iγ

)
(97)

and

A =
N |µ|2

ε0~(g1 + g2)
(98)
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where N is number density, |µ|2 = 2.1947× 10−29 C m is the far detuned dipole

moment (Steck, 2009), g1 = 7/16, g2 = 9/16, ω1 = −3880 MHz, ω2 = 4980 MHz,

γ = 2.617 45 MHz (2γ is the Lorentzian FWHM ≈ natural linewidth), and A =

2.984 65 MHz at 114 ◦C.

Across the vapor pressure equation’s temperature range (Alcock et al., 1984),

300 K to 550 K, used in the hyperfine Voigt profile model, the group velocity deviation

due to Doppler broadening remains approximately as shown in Figure 13. Indeed the

best case for model agreement occurs with no pressure broadening. Between the

absorption peaks at zero detuning a 7.3% difference in the predicted group velocity

is observed for the model baseline conditions of Figure 13. For comparison at higher

pressure broadening, with 1/4 atmospheres helium buffer gas and the alkali cell at

114 ◦C, the Lorentzian FWHM ∆νH is approximately 1/3 of the hyperfine splitting.

In this case, where the two absorption peaks remain relatively well defined as the

absorption coefficient at zero detuning is approximately half the peak values, the

two-Lorentzian approximation group velocity deviates 49.6% from the full hyperfine

structure Voigt profile group velocity.

Pulse Delay Images

Pulse delays were observed using a setup similar to the aforementioned single-

beam pulse delay measurements using a Princeton Instruments PI-MAX intensified

charge-coupled device (ICCD) gated camera system, shown in 14. A beam expander

was placed before the alkali cell so the expanded pulse flooded the alkali cell and

surrounding space inside the heater block. The PI-MAX was used in place of the

silicon detector without the compound lens attached so the expanded beam shown

directly on the PI-MAX ICCD array.

The PI-MAX camera used is capable of imaging frame gates as small as 0.5 ns.
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Figure 14. Experimental setup for pulse delay observation with Prince-
ton Instruments PI-MAX image array.

The camera used contains 256 × 1024 spectrometer ICCD array. The camera was

turned on its side to align the ICCD array vertically with the expanded beam and

the vapor cell such that pulses arriving both inside and outside the cell could be

imaged simultaneously thus providing temporally imaged evolution of delayed and

non-delayed pulses. Close-up detail of the image array relative to the alkali-metal

vapor cell are shown in 15.

Four 0.5-ns frames of a multi-frame TIFF imaged with the PI-MAX ICCD are

shown in 16. Each image of the 256 × 1024 array captures laser pulses outside the

alkali-metal vapor cell shown at the top of each image and laser pulses imaged through

the reference cell. The edge of the Pyrexrreference cell is highlighted with dashed

curves. The series of images details the time evolution of a 10-ns FWHM pulse delayed

20 ns where frame (a) shows the cell prior to the pulse arrival at 0 ns, (b) shows peak

non-delayed pulse intensity outside the cell at 23 ns, (c) captures the peak delayed

pulse intensity at 43 ns, and (d) shows the vapor cell after the pulse passage at 55 ns.
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Figure 15. Close up detail showing half heater block with alkali-metal
vapor cell. The PI-MAX intensified CCD (ICCD) image array is shown
as the extruded rectangle intersecting the vapor cell. Notice the image
array captures non-delayed pulses outside the alkali-metal vapor cell with
the expected delayed pulses imaged through the reference cell.

Figure 16. Four frames taken from PI-MAX intensified CCD (ICCD) im-
age array. Each 256×1024 image array frame captures laser pulses outside
the alkali-metal vapor cell shown at the top of each image and laser pulses
imaged through the reference cell. The edge of the Pyrexrreference cell
is highlighted with dashed curves. The series of images details the time
evolution of a 10-ns pulse delayed 20 ns where (a) shows the cell prior
to the pulse arrival at 0 ns, (b) shows peak non-delayed pulse intensity
outside the cell at 23 ns, (c) captures the peak delayed pulse intensity
at 43 ns, and (d) shows the vapor cell after the pulse passage at 55 ns.
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Conclusion

Tuning of optical pulse delays obtained in the hyperfine doublet structure for

the alkali atoms may be achieved through frequency modulation. Indeed, delays of

0 ns to 37 ns have been observed in a single pass through a 5-cm Cs cell at 137.2 ◦C

by detuning from resonance 25 GHz. Delay predictions are nearly exact when the

modeling precisely matches the absorption profile including Voigt lineshapes and full

hyperfine structure. The frequency dependence of the delays are sensitive to va-

por pressure, constraining cell temperature uncertainties to about 0.1 ◦C. Using the

Voigt profile and hyperfine structure allows for accurate prediction of the pulse delay

achieved by frequency tuning.
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V. Hole Burning

The full frequency dependence of the optical delay in the Cs D1 (6 2S1/2−
6 2P1/2) line has been observed, including all four hyperfine split compo-
nents. Pulse delays of 1.6 ns to 24.1 ns are obtained by scanning across
the hyperfine splitting associated with the lower 2S1/2 state. Optical con-
trol of pulse delays in cesium vapor were demonstrated by pumping the D2

(6 2S1/2− 6 2P1/2) transition and observing resulting holes in the D1 delay
spectrum. For a pump at four times the saturation intensity, the pulse
delays are reduced by a maximum of 78% in a narrow region of 110 MHz.
The frequency dependence of the delays of the probe laser in the vicinity
of the spectral holes agrees with a Kramers-Kronig model prediction.

Introduction

Numerous applications from communications to interferometry for remote sensing

stand to benefit from the tunable delay of optical pulses. Several methods have been

used seeking to achieve a rapidly tunable optical delay system capable of delaying

pulsed information multiple pulse widths with little loss of signal amplitude and no

pulse dispersion. It is well understood that coherently coupled fields can produce slow

light through electronically induced transparency (EIT) (Fleischhauer et al., 2005;

Boller et al., 1991; Kasapi et al., 1995). Researchers have exploited an alternate

method of controlling pulse delays through the rapidly varying frequency-dependent

absorption near atomic transitions (Grischkowsky, 1973; Tanaka et al., 2003; Camacho

et al., 2006a). We previously reported controlling optical delay by tuning a single laser

across the D2 (6 2S1/2− 6 2P1/2) absorption spectrum of cesium vapor (Anderson and

Perram, 2010a). By extending the spectral analysis to include Voigt profiles with

the Doppler component, the full frequency dependence of the observed delays was

adequately described. In this paper we extend this analysis to the Cs D1 (6 2S1/2 −

6 2P1/2) spectrum where the hyperfine splitting the large enough to resolve all four
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components. Agarwal and Dey proposed using hole burning in a Doppler-broadened

atomic vapor using a counter propagating pump beam to saturate the media and

achieve group indices of about 103(Agarwal and Dey, 2003). Narrower resonances may

be achieved using quantum coherence effects (Bigelow et al., 2003). Shakhmuratov

et al. extended the technique to persistent spectral hole burning and slow light

in inhomogeneously broadened solid materials (Shakhmuratov et al., 2005). Most

recently, Camacho et al. experimentally realized these concepts in hot rubidium

vapor (Camacho et al., 2006b). The pump laser induces transparency by moving

population from the probed hyperfine state to the other hyperfine component, not by

coherent effects. This work focused on frequency modulation of the pump beam to

tune delays of up to 45 ns (Camacho et al., 2006b).

In this experiment we use a continuous wave (CW) D2 pump laser to depopulate a

given velocity group in the Cs ground state and probe the full frequency dependence

of the delays observed in the D1 absorption spectrum. Monitoring pulse delays as a

function of probe frequency clearly revealed a pump intensity dependent hole.

Experimental Setup

Experimental setup for hole burning delay measurements shown in Fig. 17 is a

modified sub-Doppler absorption spectroscopy experiment where counter propagating

beams intersect in the hot cesium vapor cell. A New Focus VelocityTM model 6316 20-

mW tunable diode laser with a linewidth less than 300 kHz serves as the pump laser

on the D2 Cs transition (852 nm). The pump laser is directed through a pellicle beam

splitter where a beam sample is sent to a Bristol model 621A wavelength meter with

0.075 GHz (0.0025 cm−1) accuracy for frequency reference. The main pump beam is

directed through a 5-cm-long, low-pressure cesium vapor cell enclosed in a machined

aluminum heater block maintained at a constant temperature ±2 ◦C between 40 ◦C
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and 120 ◦C using a temperature controller system.

Figure 17. Experimental setup for hole burning delay measurements.

A New Focus VelocityTM model 6318 6-mW tunable diode laser with less than 300-

kHz linewidth is used as the D1 probe laser at 894 nm. The probe beam is directed

through an optical isolator and a pellicle beam splitter. A probe beam sample is

sent to a second Bristol model 621A wavelength meter while the main probe beam

continues to a EOSPACE fiber-coupled Mach-Zehnder interferometric lithium niobate

(LiNbO3) electro-optic intensity modulator (EOM). A Picosecond Pulse Labs 1.6-

GHz pulse/pattern generator drives the EOM to create a Gaussian 7.5-ns full-width

at half-maximum (FWHM) pulse with 133 Hz repetition rate. The modulated probe

is split exiting the EOM fiber to a silicon photodiode detector with 2.3-ns response

time providing initial intensity reference before the alkali-metal vapor cell. The probe

beam is aligned overlapping but counter propagating to the pump beam in the Cs

cell enclosed in the heater block. Probe pulse delay is measured after the alkali-metal

vapor cell by a silicon photodiode detector with a 1-ns response time.

Pulse delay temporal waveforms were 2000 pulse averages recorded on a 3 GHz

oscilloscope triggered by the pulse generator signal. The CW D2 pump is set at a

fixed power and frequency detuned from an absorption peak. Neutral density filters

placed in the D2 pump beam path to vary pump power at 0 mW (blocked), 5 mW
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and 16 mW. Probe laser is scanned across the D1 absorption spectrum near F ′′ = 4

to F ′ = 3, 4, 5 as depicted on the Cs energy level diagram in Fig. 18. Simulated

absorption coefficients for Cs D1 and D2 at 50 ◦C are shown in Fig. 19. The x-axis

is labeled using both nanometer (nm) and detuning frequency ν∆1 and ν∆2 (GHz)

scales. The detuning frequencies ν∆1 and ν∆2 represent detuning from the central

atomic transition frequency 335.116049 THz for D1 and 351.725718 THz for D2.

Regions of the absorption spectra used in this experiment are highlighted with gray

squares.

Figure 18. Energy level diagram depicting the pump D2 transitions and
probe D1 transitions Energy level separations are not drawn to scale.

Optical Delay

Previous work estimated pulse delay using a group velocity through the Kramers-

Kronig relations to find the real index of refraction nR from the absorption coefficient

α (Anderson and Perram, 2010a,b) such that

nR = 1 +
c

2π2
P

∫ ∞
0

α(ξ)

ξ2 − ν2
dξ. (99)
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Figure 19. Simulated absorption coefficients for the (a) D1 and (b) D2

transitions at 50 ◦C. Single hyperfine transition absorption lineshapes
are shown in the D2 spectrum as thin black lines. Regions of the D-
line absorption spectra used in this experiment are highlighted by gray
squares.

Optical pulse delays are calculated as td = l/vg for cell length l where the group

velocity is defined as

vg =
c

nR + ν dnR

dν

. (100)

Observed D1 pulse delays compared favorably to previous work in Cs D2 at similar

temperatures. Kramers-Kronig delay model prediction and observed delays for a Cs

vapor cell at 109.5 ◦C are shown in Fig. 20 where the solid line represents the delay

model prediction. The Cs D1 on resonance optical thickness ` = 1/σ(ν0)n ≈ 0.05 mm

for the F ′′ = 4→ F ′ = 3 transition ν∆1 = −4.665 GHz at 109.5 ◦C.

The pulse/pattern generator produced a nearly Gaussian 7.5-ns pulse as shown

in Fig. 21. Sample pulses at three D1 detuning frequencies ν∆1 are depicted as a

series of gray shapes where (1) is farthest from the absorption peak while pulse (3)

is closest to the resonant transition frequency. Solid black lines show Gaussian fit

curves, and the peak of the fit curve is marked for reference. As expected the pulse
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Figure 20. Pulse delay for full spectrum Cs D1 scan from ν∆1 = -8 GHz
to +8 GHz. Cesium cell was maintained at 109.5 ◦C. No D2 pump was
used.

amplitude decreases for pulses closer to the peak absorption while the pulse width

increases due to dispersion. Peak time for each Gaussian fit is recorded as the pulse

arrival time. Zero-delay time is determined when the probe is detuned far off resonant

frequency and the value is subtracted from the arrival time for each pulse to calculate

the pulse delay. Maximum error in delay time measurement is ±0.15 ns with average

error ±0.03 ns. Near the resonant transitions resolving the peak is difficult as the

pulse amplitude is attenuated approaching detector noise level. Pulse peaks lost in

the noise appear in Fig. 20 as ‘stray’ data points below the model prediction curve.

As demonstrated in Fig. 21, pulses generally decrease in amplitude near absorp-

tion peaks and the pulse FWHM increase. Dispersion of the Gaussian fit is shown

in Fig. 22. As the probe is tuned toward the transition frequency with no pump

laser, pulses initially appear to broaden before pulse narrowing is briefly observed.

At higher pump intensities, pulse dispersion appears more evident near resonant fre-

quency peaks, however narrowing is not observed before pulse attenuation prevents
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Figure 21. Pulse shape for selected pulses from data depicted in Fig. 20
at 109.5 ◦C. Pulse data for pulse at three D1 detuning frequencies ν∆1 are
depicted using gray lines. Solid black lines show Gaussian fit curves, and
the peak of the fit curve is marked for reference. (1) ν∆1 = 7.44 GHz,
peak at 4.66 ns, width 7.37 ns (2) ν∆1 = 6.73 GHz, peak at 12.04 ns,
width 8.60 ns (3) ν∆1 = 6.5 GHz, peak at 19.84 ns, width 11.83 ns.

accurate resolution of the pulse.

High-temperature delay, where Doppler-broadened absorption masks the individ-

ual hyperfine D1 peaks as in Fig. 20, compares favorably to previous work(Anderson

and Perram, 2010a). This work reports higher frequency sampling with 200 frequency

samples over 20 GHz compared to previous work in Cs D2 90 samples over 20 GHz

(Anderson and Perram, 2010a). The full frequency dependence of the optical delays

for the Cs D2 line, similar to that now reported for the D1 line in Fig 20, have been

successfully modeled as expressed by equations 99 and 100. However, the hyperfine

structure of the excited 2P3/2 state was unresolved and delays at frequencies between

upper state hyperfine components has not previously been investigated. The spectral

simulation illustrated in 20 agrees very well with the observed pulse delays in this

region.
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Figure 22. Pulse width in the neighborhood of D1 absorption peaks.
Gaussian pulse fit FWHM is shown for 0 mW (no pump) and 5.6 mW
across the D1 spectrum between ν∆1 = -6 GHz and -2.5 GHz.

Intensity-Dependent Delay

Crossing laser beams in a modified saturation spectroscopy setup is a simple way

to reduce Doppler broadening of spectral lines and examine hyperfine structure near

the natural broadening limit. Given a pump at frequency νpump and D2 hyperfine

transition at νD2, the beams interact at similar velocity groups determined by the

frequency difference δνpump = νpump − νD2. Spectral holes are burnt at frequency

νhole such that νhole = νD1 − δνpump for each hyperfine transition. For beams that

are not perfectly aligned to be counter propagating and intersecting, there will be

some residual Doppler component. The depth and width of the holes are intensity

dependent where hole width ∆νhole is a function of intensity and saturation intensity

Isat such that

∆νhole ∝
(

1 +
I

Isat

)1/2

. (101)

Overall D1 absorption decreases as D2 pump laser power increases due to ground

state depletion and spectral holes are evident in the D1 absorption. The absorption
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Figure 23. Absorption coefficients for Cs D1 with Cs D2 pump at ν∆2 =
-3.84 GHz (852.3566 nm, 11732.1790cm−1) various pump powers.

spectra for a low-pressure Cs cell at 44 ◦C with a D2 pump at a fixed frequency ν∆2

= -3.84 GHz (852.3566 nm, 11732.1790 cm−1) at 0 mW (no pump), 5.7 mW and

16.4 mW are shown in Fig. 23. At the resonant frequency, the D1 laser is 2.3%

Isat while D2 pump intensity is approximately 4 × Isat at 5.6 mW and 12 × Isat at

16.4 mW.

In the presence of holes burnt in the D1 absorption spectra, predicted delay is

calculated from observed absorption spectra using the Kramers-Kronig model to cal-

culate group velocity and pulse delay. Observed delay and the predicted delay for Cs

at 52.5 ◦C, ν∆2 =-3.84 GHz at three D2 pump powers are shown in Fig. 24. Pump

power is adjusted using neutral density filters as changing diode current causes a

subsequent shift in pump laser frequency.

Rapid variations in predicted delay near absorption peaks in Fig.24 are due to

frequency instability of the pump/probe lasers in a region of highly dispersive ab-

sorption. In general the D1 optical delay decreased with increasing D2 pump power.

It is speculated that this may provide a rapidly tunable optical delay mechanism

by varying pump power though it has not been verified how quickly the system can
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respond to changes in pump intensity.

Hole Burning Effects

Sub-Doppler spectroscopy removes some of the velocity-induced broadening using

counter propagating beams interacting with atoms moving within a narrow velocity

class. For a single resonant transition at ν0 a pump beam detuned +δν interacts

with atoms at ν0 +δν effecting the observed spectrum of a counter propagating probe

beam at ν0 − δν. In cesium D2 there are three closely spaced hyperfine components

corresponding to the allowed transitions of the 2P3/2 energy splitting as shown in

Fig. 18 and Fig. 19. A D2 pump interacts with velocity groups detuned +δνi from

each hyperfine component. The counter propagating D1 probe sees spectral holes at

corresponding velocity groups −δνi from each D1 hyperfine component.

In the neighborhood of the spectral hole absorption changes rapidly across a nar-

row frequency range. The Kramers-Kronig delay model predicts a significant change

in delay in the hole region. To observe the effect of a spectral hole on the pulse delay,

the D2 pump laser was set at ν∆2 =-3.86 GHz for 16.4 mW and 52.5 ◦C while the D1

probe was scanned across the absorption spectrum from ν∆1 =-6 GHz to -2 GHz.

The observed transmittance is shown in Fig. 25 with a no pump reference absorp-

tion spectrum (dashed lines) to visualize the spectral holes. A simulated absorption

spectrum was then created using the observed spectrum as a reference by subtracting

a series of Lorentzian line shapes from the reference absorption spectrum. The re-

sulting difference is in the absorption spectrum is shown in Fig. 25 as the solid lines.

Lorentzian line shapes used in the prediction have frequency differences of 192 MHz

and 285 MHz compared to accepted hyperfine splitting of approximately 201 MHz

and 251 MHz. The Lorentzian FWHM for the absorption corrections is 110 MHz

which is more than 20 times the natural linewidth for Cs D1 and D2 and less than
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Figure 24. Observed delay (black dots) and the predicted delay (gray
lines) for Cs at 52.5 ◦C, ν∆2 = -3.84 GHz at three D2 pump powers of
(a) 0 mW (no pump), (b) 5.7 mW and (c) 16.4 mW. Predicted delay at
each power is calculated using the observed absorption spectra and the
Kramers-Kronig relations model.
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Figure 25. Observed Cs D1 transmittance with reference absorption
spectrum (dashed lines) to visualize the spectral holes. Difference in the
absorption spectrum is shown as solid lines.

the Doppler width (∼400 MHz). Frequencies used for each Lorentzian line shape used

to approximate the reference absorption spectrum are on the order of the hyperfine

separation of the Cs D2 F
′′ = 4 → F ′ = 3, 4, 5 transitions. The modified absorption

curve similar to the observed absorption spectrum is then used to predict the optical

delay using the Kramer-Kronig model and the resulting delay prediction and observed

delay is given in Fig. 26. The observed delay in the region of the hole match the

Kramer-Kronig model prediction in general shape and magnitude.

Conclusion

The frequency dependence of the optical pulse delay in cesium D1 closely match

the previously developed model predictions using Voigt lineshapes and the full hyper-

fine structure. The observed D1 optical pulse delays compared favorably to similar

results in Cs D2. The delay prediction Kramers-Kronig model accurately predicts

the delays between D1 upper state hyperfine components at lower temperatures than
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Figure 26. Pulse delay in the narrow spectral region surrounding a hole
burnt in the Cs D1 absorption spectrum. Solid line depicts the model
delay prediction.

previously reported with smaller frequency sampling separation. Delays up to 24 ns

where achieved by detuning from resonance by 10 GHz.

Tunable optical delays were demonstrated with a Cs D1 pulse by varying D2 pump

laser power. Increasing D2 pump power reduced D1 absorption overall. Observation

of hole burning effects on delay close to the spectral hole were noted. Location of

the holes and predicted delay from a modified absorption spectrum matched model

predictions. For a pump intensity of four times saturation intensity Isat observed

delay is reduced by an average of 50% across the spectrum and reaches a maximum

of 78% in a narrow 110 MHz spectral hole region.
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VI. Hyperfine Relaxation

A Cesium D2 (6 2S1/2 − 6 2P3/2) probe laser is used to examine temporal
pulse dynamics during a 10-ns high-power D2 pulse event. The probe laser
is set perpendicular to the pump pulse in a heated Cs optical cell with he-
lium buffer gas. The probe frequency is scanned across the D2 transitions
and the dynamic excitation and relaxation of the hyperfine components
is studied relating to temperature, buffer gas pressure, and pump/probe
intensity.

Introduction

Alkali-metal vapor laser systems were available shortly after the laser’s invention

using cesium vapor 6S1/2 → 8P1/2 pumped at 388.8 nm (Rabinowitz et al., 1962).

Alkali-metal elements have a simple atomic structure with a single valence electron

and are relatively simple to model. The quantum defect can be quite small leading

to highly efficient laser systems such as diode-pumped alkali laser (DPAL) systems

(Krupke et al., 2003). Diode-pumped alkali lasers are excellent three-level lasers

provided the D1 and D2 absorption profiles are sufficiently broadened to match pump

linewidth and population excited to the 2P3/2 level can be quickly relaxed to the upper

lasing 2P1/2 state. Broadening is typically achieved using a homogeneous pressure

broadening species such as helium and a collisional P3/2 → P1/2 relaxation gas such

as ethane (Krupke et al., 2003). DPAL systems have been successfully demonstrated

in Rb (Krupke et al., 2003), Cs (Beach et al., 2004; Ehrenreich et al., 2005) and other

alkali-metal vapors building hopes that DPAL systems offer a scaling path to high

power laser systems without the thermal management issues of solid state lasers or

the hazards of chemical laser systems.

Modeling of the intra-cavity dynamics, such as thermal effects and bleached am-

plification medium, of a DPAL system and subsequent validation of the theoretical
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description are critical to power scaling and maximizing laser efficiency. Optical mea-

surement of the bleach wave dynamics have not been previously accomplished. Except

for a very small increase in probe intensity at the absorption peak, the methodology

described in this section did not prove successful in imaging the bleach wave, however

other significant pulsed-pump hyperfine dynamics were observed.

Direct observation of hyperfine relaxation is difficult due to the hyperfine filters re-

quired to observe resonance lines (Beverini et al., 1971). Typical hyperfine relaxation

rates are measured for alkali-foreign-gas collision-induced relaxation of the various

ground state levels (Beverini et al., 1971; Bernabeu and Alvarez, 1980; Tornos and

Amare, 1986), normally accomplished at low temperatures to reduce Cs-Cs collisions.

Wall collisions and diffusion are predominant factors besides the intended foreign-

gas interactions. In previous work hyperfine relaxation of the moderately spaced D1

levels with a collisional gas were studied (Morgus et al., 2008) using counter prop-

agating pump beams at Cs D1 and to excite 6P1/2 atoms to the 8S1/2 level with a

761.1 nm pump laser. Relaxation was observed measuring side fluorescence of the

8S1/2 → 6P3/2 photons.

To the best of my knowledge pump-probe study of the hyperfine relaxation related

to pulsed pump rates for DPAL systems has not been accomplished. This work

examines pulsed pump dynamics of a DPAL-like cesium vapor cell related to the

excitation and relaxation to pre-pulse equilibrium of hyperfine components.

Experimental Setup

The experimental setup to measure pulse dynamics is shown in Figure 27. A

Spectra PhysicsTM Quanta Ray PRO-290 Nd:YAG laser is used as a pump laser for

the SirahTM Precision Scan PRSC-D-18 pulse dye laser (LDS 867 dye mixture) which

produced a 10 ns pulse with 800 KJ per pulse at 10 Hz and a spectral linewidth
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Figure 27. Setup for hyperfine relaxation experiments. A 10 Hz Sirah
dye laser generates high-power pump pulses sent through the Cs vapor
cell. A low-power D2 probe passes perpendicular to the pump pulse.

of 1.4 GHz at 852.34 nm. For comparison closely spaced group of three hyperfine

lines at Cs D2 ν∆2 ≈ −4 GHz has a Doppler-broadened FWHM of 0.8 GHz so that

the pump pulses cover the full set of three Cs D2 upper state hyperfine split energy

levels. The pulsed pump beam is directed through a series of mirrors and an aperture

to limit the spatial pump beam width to the diameter of the cesium cell. The 2.5 cm

beam passes through the heated alkali cell and into a beam block. Care was taken to

eliminate reflections and scattered pump light with the extensive use of black foam

board and blackout curtains.

A New Focus VelocityTM model 6316 20-mW tunable diode laser with a linewidth

less than 300 kHz serves as the continuous wave probe laser on the D2 Cs transi-

tion (852 nm). The probe laser is directed through a pellicle beam splitter where

a beam sample is sent to a Bristol model 621A wavelength meter with 0.075 GHz

(0.0025 cm−1) accuracy for frequency reference. The probe beam is directed through

the alkali-metal vapor cell perpendicular to the pump beam and is then directed along

a 5 m path through two apertures to eliminate pump beam reflections and side flu-

orescence on the way to the detector. A 1-ns rise time silicon photodiode is used to

collect probe beam intensity measurements recorded on a 3 GHz oscilloscope.
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Results

The pump laser output 50 mW pulsed power at the cesium cell and was set to

pump the D2 absorption feature peaks at (1) 852.357 nm (ν∆2 =-4. GHz) and (2)

852.335 nm (ν∆2 =+5 GHz) as shown in Figure 28. Points A, B, C and D refer to

frequencies detuned from the absorption peaks until the probe beam transmission

is approximately 50%. Hyperfine F ′′ → F ′ transitions are labeled in Figure 28 for

reference.

Figure 28. Cesium D2 absorption with hyperfine structure. Reference
locations A, B, C and D are set at 50% probe transmission and pump
locations are labeled 1 and 2 at the absorption peaks.

It was hoped that the pump beam would bleach the Cs vapor and the probe beam

would pass unattenuated around the pulse arrival time so that temporal and spatial

observation of the DPAL bleach wave could verify theoretical results. While this

was not the case, other interesting frequency-dependent hyperfine relaxation-related

phenomena were observed.

There are distinct short-term and long-term effects following a pump pulse event.
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Sample pump and probe intensities are shown in Figure 29. Pulse data is shown

Figure 29. Sample pump and probe intensities at the detector. These
sample pulses taken for probe Point A at 80 ◦C illustrate (a) the short-
term nanosecond timescale effects in the neighborhood of the pump pulse
and (b) long-term microsecond hyperfine effects and relaxation to pre-
pump equilibrium.

for probe frequency at point A (852.357 nm), pump at frequency (2) 852.335 nm

(ν∆2 =+5 GHz), Cs cell temperature T = 80 ◦C. The time axis is synchronized to

the q-switch signal from the Quanta Ray Nd:YAG laser. Arrival time for the pump

at 140 ns is shown as the gray line. Figure 29 (a) shows short-term effects on probe

intensity, dropping initially during pulse arrival, partially returning before decreasing

again past 200 ns. Figure 29 (b) shows long-term probe intensity decay to return to
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pre-pulse equilibrium around 50 µs.

Full frequency spectra from ν∆2 = ±7 GHz illustrating short-term and long-

term effects are shown in Figure 30 through Figure 33 for a pump at frequency

(2) 852.335 nm (ν∆2 =+5 GHz). In these figures, the absorbance spectrum plot is

interpreted such that lower values indicate little absorption so that high probe signal

intensity is transmitted.

Figure 30 shows nanosecond-scale pulsed pump effects as the probe is scanned in

frequency across the Cs D2 absorption spectrum. Figure 31 shows the absorbance at

four distinct frequencies (A, B, C and D) from Figure 30 (see Figure 28 for frequency

reference points).

Figure 30. Nanosecond-scale frequency-dependent probe intensity after
a pump pulse event at +5 GHz.

Figure 32 shows microsecond-scale pulsed pump effects as the probe is scanned in

frequency across the Cs D2 absorption features. Figure 33 shows the absorbance at

four distinct frequencies (A, B, C and D) from Figure 32 (see Figure 28 for frequency

reference points).
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Figure 31. Nanosecond-scale frequency-dependent probe intensity after
a pump pulse event at +5 GHz at Points A, B, C, and D (See Figure 28
for graphical depiction of reference points).

Figure 32. Microsecond-scale frequency-dependent probe intensity after
a pump pulse event at +5 GHz.
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Figure 33. Microsecond-scale frequency-dependent probe intensity after
a pump pulse event at +5 GHz at Points A, B, C, and D (See Figure 28
for graphical depiction of reference points).
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For the long-term effect each pulse is fit to a double exponential of the form

y = a+ b exp(−cx) + d exp(−ex). (102)

Detector intensity data is transformed using

y = − ln
I

I0

(103)

where I0 is the pre-pulse intensity. A sample pulse data plot with double exponential

fit is shown in Figure 34 for a probe at point B with 21.4 mW probe power. Data

Figure 34. Sample data fit is shown for a probe at point B with 21.4 mW
probe power. Data before the peak is excluded from the fit data and the
fit function is shown as a solid black line.. Data for all samples is fit to
a double exponential function of the form y = a + b exp(−cx) + d exp(−ex).
Residuals from the fit are shown below the data plot.

before the peak is excluded from the fit data, the resulting fit function is shown as a

solid black line over the pulse data and residuals are shown below the data plot.
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Data Trends

It should be noted in that in Figure 30 the short-term timescale pulse effects at the

time of the pulse are observed far from the absorption peak, especially near point A,

the Cs D2 F
′′ = 4→ F ′ = 3, 4 transitions. Little pulse effect is noted around point B

in Figure 30 and the shape of the pump pulse is dramatically different compared the

response at other frequencies. There is a small region of increased intensity (decreased

absorption) at the −4 GHz absorption peak with the pump tuned to peak 2 at 5 GHz.

Similar hyperfine frequency-dependent pulse response and double-exponential re-

turn to equilibrium is evident in the long-term microsecond scale Figures 32 and 33.

Decay curves in the A, C, and D regions are similar while the decay around B is

markedly longer lived at 80 ◦C.

Recall some of the general trends in the absorption coefficient. As temperature

increases, alkali concentration and inhomogeneous Doppler-broadening increase. Ho-

mogeneous broadening increases with buffer gas pressure. Pressured broadened Cs

D2 with He is broadened sufficiently that the 50% transmission “saddle” between the

ground state splitting is no longer distinguishable before 15 Torr He at 90 ◦C. There-

fore at higher temperatures and buffer gas pressures all four frequency points are no

longer distinguishable. Therefore it is only possible to compare points A and B at

low pressures and temperatures. Figure 35 shows the double exponential fit decay

constants c and e for points A and B at various HE pressures up to 12 Torr at 93.5 ◦C.

It it evident that the constants rapidly approach constant values with increasing He

pressure.

Temperature dependence for points A and B data in Figure 36 shows that the c

and e values converge to a single value indicating that the double-exponential decay

curve converges to a single-exponential decay.

Closer examination of the He pressure dependence is shown in Figure 37. As He
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Figure 35. Decay rates c and e (from the double exponential fit function
y = a + b exp(−cx) + d exp(−ex)) for probe frequencies A and B are shown
at various He pressures (Torr).

Figure 36. Decay rates c and e (from the double exponential fit function
y = a + b exp(−cx) + d exp(−ex)) for probe frequencies A and B are shown
at low He pressures (0.06 Torr).
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Figure 37. Decay rates c and e (from the double exponential fit function
y = a + b exp(−cx) + d exp(−ex)) for probe frequency A are shown at low
He pressures (0-1.2 Torr).

pressure increases the c decay rate peaks around 1 Torr He for point A at 93.5 ◦C and

begins to decrease to the high-pressure value. The e decay constant remains relatively

constant.

The decay constants quickly approach an asymptote at higher pressures as shown

in Figure 38.

Decay rate as a function of pump and probe laser power is also examined in

Figures 39 and 40 with a low-pressure alkali sample at 95.5 ◦C and pump laser at

peak 2 (5 GHz). Decay rate as a function of probe power is shown in Figure 40.

Discussion

Several pump and probe characteristics were also examined. Various linear and cir-

cular pump polarization combinations were used and no polarization-induced changes

could be identified. Pump intensity has the intuitive effect in that excitation increases

with pump power (no pump shows no excitation or relaxation). Probe power depen-
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Figure 38. Decay rates c and e (from the double exponential fit func-
tion y = a + b exp(−cx) + d exp(−ex)) for probe frequency A are shown at
moderate He pressures (0-400 Torr).

Figure 39. Decay rates c and e (from the double exponential fit function
y = a + b exp(−cx) + d exp(−ex)) for probe frequency B are shown at low
He pressures (0.06 Torr) at various pump powers.
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Figure 40. Decay rates c and e (from the double exponential fit function
y = a + b exp(−cx) + d exp(−ex)) for probe frequency B are shown at low
He pressures (0.05 Torr) at various probe powers.

dence was not evident. Decay rates were constant over useful range of probe powers

sufficient to penetrate the optically thick alkali-metal vapor and produce detector

signal outside noise limitations.

The full-frequency spectra of Figures 30 through 33 illustrate the pump pulse

induced effect on hyperfine state excitation and relaxation return to equilibrium.

For short-term nanosecond scale effects, there are several potential explanations

for the observed decrease in probe intensity at pump arrival including spatial vari-

ations in temperature, pressure caused by the pump laser inducing changes in the

index of refraction reducing the probe beam incident on the detector, indicated by a

rise to the long-term maximum on the time scale of the Cs D2 lifetime sfter the pump

pulse. To test this theory a fast frame rate (200k frames/second) camera was setup to

capture images of probe spot movement as the 30-mW pump laser is focused through

the alkali vapor cell at 80 ◦C as shown in Figure 41. Beam deflection was observed

up to 1 mm at 60 cm after the alkali vapor cell, which would translate to over 3 mm
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Figure 41. Experimental setup for beam steering observation. Move-
ment of the probe beam is captured using a high speed (200k frame/sec-
ond) camera as the pulsed pump beam is focused through the alkali-metal
vapor cell.

deflection at the approximately 2-m path length used in the experimental setup de-

picted in Figure 27. In such cases the probe beam would be steered completely away

from the 1 mm detector for deflections of this magnitude. Observed deflections lasted

up to 100 µs. Deflections were most evident when the probe beam, detuned from

cesium D2 peak (-4 GHz), was closely aligned spatially to the tightly focused pump

beam tuned to the D2 peak absorption (+5 GHz). Repetition of the probe beam

deflection roughly followed the 10-Hz pulsed pump rate, though deflection was not

consistent in magnitude or direction from pulse to pulse. This may have resulted

from inconsistent pulse-to-pulse pump intensity or frame synchronization artifacts as

well as physical variations within the vapor cell.

Frequency dependence of the absorption shows there is a hyperfine component

to the decay rate’s return to equilibrium. In the cases illustrated the F ′ = 5 upper

state, the primary transition for frequency point B, is electronically forbidden from

the F ′′ = 3 pump tuning. The deviation of the point B excitation and decay from

the other frequency regions is expected.
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Temperature and He pressure dependence is predicted as the total Voigt lineshape

broadening increases transfer between upper state components. The F ′ = 4→ F ′ = 5

energy separation is only 251 MHz. At 90 ◦C the Doppler-dominated Voigt FWHM is

420 MHz. Over the range of temperatures used in this experiment the Voigt FWHM

ranges from 410 MHz to 440 MHz at 0 Torr He.

Pressure broadening with He has a pronounced effect on the total broadening of

the hyperfine lines. At low pressures the homogeneous broadening is natural broad-

ening limited at 5.25 MHz. As pressure increases to 0.24 Torr the pressure induced

broadening is equal to the natural linewidth. By 18.6 Torr He at 90 ◦C the total homo-

geneous broadening exceeds the Doppler-broadening and the total Voigt broadening

is 680 MHz. The total separation of the Cs 2P3/2 upper state is 603 MHz. Laser exci-

tation should be well mixed and the frequency dependence is reduced. Therefore the

asymptotic relaxation rates at high He pressures is expected as depicted in Figure 35

where the c decay rates for points A and B quickly reach a common constant value.

Low pressure response shows decay rates initially increase due to He pressure

before attaining the pressure-broadened asymptotic constant showing that He helps

the energy transfer return to equilibrium before the states are sufficiently pressure

broadened.

It is therefore beneficial to examine the effect at low He pressures at various

temperatures. Temperature has little effect on Doppler broadening over the range

used in this experiment. However the concentration of alkali-metal vapor atoms varies

exponentially with temperature above the room temperature melting point. Collisions

between Cs-Cs are rare at 93 ◦C where the number density is 1.0× 1012 atoms/cm3

and 2.2× 1013 atoms/cm3 by 105 ◦C. Cesium-cesium collisional broadening is less

then natural broadening until approximately 120 ◦C. As evidenced by the change in

decay rate as a function of temperature as shown in Figure 36 temperature effects

the data fit decay rates as the double-exponential decay becomes a single-exponential
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decay. This suggests that decay rates trend toward a single dominant hyperfine

relaxation process. At low temperatures at least two processes are present in the

decay which could be representative of Cs-wall collisions or Cs-Cs interactions.
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VII. Conclusion

A hyperfine structure cross section model was created to generate simulated ab-

solute absorption coefficients for cesium and rubidium. The absorption coefficients

were used to predict group velocity and group delay used a Kramers-Kronig delay

model and the predicted delays were validated by measuring pulse delays across the

Cs D1 and Cs D2 spectra.

Tunable slow light delays are demonstrated through frequency modulation of a

single probe laser across the hyperfine structure of an alkali metal vapor. Delays

of 0 ns to 37 ns have been observed in a single pass through a 5 cm cesium cell at

137.2 ◦C by detuning from resonance ±25 GHz. Predicted delays closely match calcu-

lations from an absorption profile model including Voigt lineshapes and full hyperfine

structure. Frequency dependence of the delays are sensitive to vapor pressure and

Doppler broadening, constraining vapor temperature uncertainties to about 0.1 ◦C.

Additionally temporal delay of pulses using a gated camera demonstrated the pulse

delay effect in an image.

Tuning of optical pulse delays obtained in the hyperfine doublet structure for

the alkali atoms may be achieved through frequency modulation. Indeed, delays of

0 ns to 37 ns have been observed in a single pass through a 5-cm Cs cell at 137.2 ◦C

by detuning from resonance 25 GHz. Delay predictions are nearly exact when the

modeling precisely matches the absorption profile including Voigt lineshapes and full

hyperfine structure. The frequency dependence of the delays are sensitive to va-

por pressure, constraining cell temperature uncertainties to about 0.1 ◦C. Using the

Voigt profile and hyperfine structure allows for accurate prediction of the pulse delay

achieved by frequency tuning.

The frequency dependence of the optical pulse delay in cesium D1 closely match

the previously developed model predictions using Voigt lineshapes and the full hyper-
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fine structure. The observed D1 optical pulse delays compared favorably to similar

results in Cs D2. The delay prediction Kramers-Kronig model accurately predicts

the delays between D1 upper state hyperfine components at lower temperatures than

previously reported with smaller frequency sampling separation. Delays up to 24 ns

where achieved by detuning from resonance by 10 GHz.

Spectral hole burning produced optical delays in Cs D1 pulses by varying D2 pump

laser power. Increasing D2 pump power reduced D1 absorption overall. Observation

of hole burning effects on delay close to the spectral hole were noted. Location of

the holes and predicted delay from a modified absorption spectrum matched model

predictions. For a pump intensity of four times saturation intensity Isat observed

delay is reduced by an average of 50% across the spectrum and reaches a maximum

of 78% in a narrow 110 MHz spectral hole region.

Hyperfine relaxation and temporal dynamics were examined in a cesium vapor cell.

Short-term nanosecond scale pump effects and long-term microsecond scale relaxation

of hyperfine populations were observed. Temperature and helium pressure-dependent

absorption features were noted.

Fundamental understanding of pulse delays may lead to the development of prac-

tical all-optical delays for optical communication systems, improved interferometry

instruments, remote sensing techniques and analytic devices. Exploration of the tem-

poral dynamics in alkali-metal vapors is crucial to the optimization of scalable pumped

DPAL systems.
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Appendix A. Physical Constants

Table 3. Physical constants†

Symbol Description Value/Units

αfs Fine-structure constant 1/137.035 999 679(94)
c Speed of light in vacuum 299 792 458 m s−1

h Planck constant 6.626 068 96(33)× 10−34 J s
4.135 667 33(10)× 10−15 eV s

~ Planck constant / 2π 1.054 571 628(53)× 10−34 J s
6.582 118 99(16)× 10−16 eV s

kB Boltzmann constant 1.380 650 4(24)× 10−23 J K−1

8.617 343(15)× 10−5 eV K−1

ε0 Permittivity (Electric constant) 8.854 187 817× 10−12 F m−1

µ0 Permeability (Magnetic constant) 12.566 370 614× 10−7 N A−2

e Elementary charge 1.602 176 487(40)× 10−19 C
me Electron mass 9.109 382 15(45)× 10−31 kg
mp Proton mass 1.672 621 637(83)× 10−27 kg
mu Atomic mass constant 1.660 538 782(83)× 10−27 kg
atm Standard atmosphere 101 325 Pa = 760 Torr

† NIST 2006 CODATA recommended values
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Appendix B. Cesium Data

Physical Properties

Table 4. Cesium (Cs) physical properties

Property Symbol Value

Atomic number† Z 55
Total nucleons† Z +N 133
Ground state† — 6s2S1/2

Relative natural abundance† η(133Cs) 100%
Atomic mass† m 132.905 452(1) u
Melting point‡ Tm 28.44 ◦C
Boiling point‡ Tb 671.0 ◦C
Density (solid)‡ ρ 1879 kg m−3

Nuclear spin† I 7/2
Magnetic moment µ +2.579
Ionization energy† EI 3.893 90(2) eV
† NIST “Chemistry Webbook.” 2005
‡ Winter, M. “WebElements.” 2008

Cesium Vapor Pressure

Cesium vapor pressure, in atmospheres, and Figure 42 are derived from Equation (104)

(Alcock et al., 1984) where temperature T (K) is between melting point and 550 K.

Number density derived from Equation (104) and the ideal gas las is shown in Figure 43.

log10 PV = 8.232− 4062T−1 − 1.3359 log10 T (104)

Cesium D Line Optical Properties

D1 optical properties are listed in Table 5 and illustrated in Figure 44.

D2 optical properties are listed in Table 6 and illustrated in Figure 45.
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Figure 42. Cesium vapor pressure as given by equation (104) Alcock et al.
(1984).

Figure 43. Cesium number density derived from equation (104) Alcock
et al. (1984).
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Figure 44. Cesium D1 (62S1/2 → 62P1/2) hyperfine energy level split-
ting. Hyperfine splitting not drawn to scale. Relative splitting is only
accurate for each hyperfine level.

Figure 45. CesiumD2 (62S1/2 → 62P3/2) hyperfine energy level splitting.
Hyperfine splitting not drawn to scale. Relative splitting is only accurate
for each hyperfine level.
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Table 5. Cesium D1 (62S1/2 → 62P1/2) transition optical properties(Steck,
2009)

Property Symbol Value

Frequency ν0 335.116 048 807(41) THz
Energy hν0 1.385 928 495(34) eV
Wavelength λ 894.592 959 86(10) nm
Lifetime τ 34.791(90) ns
Decay Rate Γ 28.743(75)× 106 s−1

Natural Line Width (FWHM) 4.575(12) MHz
Absorption Oscillator Strength f 0.3449(26)

Table 6. Cesium D2 (62S1/2 → 62P3/2) transition optical properties(Steck,
2009)

Property Symbol Value

Frequency ν0 351.725 718 50(11) THz
Energy hν0 1.454 620 563(35) eV
Wavelength λ 852.347 275 82(27) nm
Lifetime τ 30.405(77) ns
Decay Rate Γ 32.889(84)× 106 s−1

Natural Line Width (FWHM) 5.234(13) MHz
Absorption Oscillator Strength f 0.7164(25)

Cesium D Line Hyperfine Energy Levels

∆Ehfs = 1
2
AhfsK +Bhfs

3
2
K(K+1)−2I(I+1)J(J+1)

4I(2I−1)J(2J−1)

+ Chfs
5K2(K/4+1)+K[I(I+1)+J(J+1)+3−3I(I+1)J(J+1)]−5I(I+1)J(J+1)

I(I−1)(2I−1)J(J−1)(2J−1)
(105)
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where

K = F (F + 1)− I(I + 1)− J(J + 1) (106)

Ahfs = magnetic dipole constant

Bhfs = electric dipole constant

Chfs = magnetic octupole constant

Table 7. Cesium D line magnetic and electric interaction con-
stants(Steck, 2009).

62S1/2 62P1/2 62P3/2

Ahfs h · 2.298 157 942 5 GHz h · 291.9201(75) MHz h · 50.288 27(23) MHz
Bhfs — — h · −0.4934(17) MHz
Chfs — — h · 0.560(70) kHz

Cesium D Line Strength

Line strengths are determined using the SF ′′ F ′ from (Steck, 2009, eqn (41), Tab

8).

SF ′′ F ′ = (2F ′ + 1)(2J + 1)

 J J ′ 1

F ′ F ′′ I


2

(107)

SF ′′ F ′ obeys the rule(Steck, 2009, eqn (42))

∑
F ′

SF ′′ F ′ = 1 (108)

Strength factor values can be determined using Mathematica’s SixJSymbol func-

tion and Equation (107).

Tables 8 and 9 catalog the transition line strength values for the cesium D1 and
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D2 hyperfine lines.

Table 8. Cs D1 (62S1/2 → 62P1/2) hyperfine transition strength fac-
tors(Steck, 2009).

Transition Strength
SF ′′ F ′ (unitless)

S4 4 5/12
S4 3 7/12
S3 4 3/4
S3 3 1/4

Table 9. Cs D2 (62S1/2 → 62P3/2) hyperfine transition strength fac-
tors(Steck, 2009).

Transition Strength
SF ′′ F ′ (unitless)

S4 5 11/18
S4 4 7/24
S4 3 7/72
S3 4 15/56
S3 3 3/8
S3 2 5/14

Buffer Gas Pressure Effects

Pressure effects vary by buffer gas type and pressure. The line is broadened as

well as shifted in frequency. Table 10 shows the frequency shift and line width effects

on the cesium D1 and D2 lines due to nitrogen and helium buffer gases.

Pressure effects must also be corrected for temperature. Given the data was taken

at Tdata = 294.15 K, the buffer gas pressure effects on system at temperature Tsys, in
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Table 10. Pressure broadening and shift of cesium D line due to buffer
gases(Andalkar and Warrington, 2002). Data was taken at 294.15 K

Buffer Measured Value
Gas Quantity (MHz Torr−1)

N2 D1 width 19.51
N2 D1 shift −8.23
N2 D2 width 22.68
N2 D2 shift −6.73
He D1 width 26.21
He D1 shift 4.46
He D2 width 23.50
He D2 shift 0.75

K, and buffer gas pressure Pi, in Torr by

∆νL =
1

2π

(
1

τr

)
+
∑
i

γi

(
Tsys
Tdata

)1/2

Pi (109)

ν0 → ν0 +
∑
i

δi

(
Tsys
Tdata

)1/2

(110)

where ∆νL is the Lorentzian line width, and ν0 is the center frequency for each

hyperfine line.
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Appendix C. Matlabr Code

Cesium D2 Absorption Coefficient

The calculated absorption coefficient compares favorably to experimentally deter-

mined Cs absorption as shown in Figure 12 in Chapter IV Delay Prediction.

1 function [abs] = fnAbsCoeffCsD2(freq,T,PN2,PHe,PCH4)
2 %
3 % Monte D. Anderson
4 % Department of Engineering Physics, Air Force Institute of Technology
5 % 19 Mar 2010
6 %
7 % Calculates cesium D2 absorption coefficent (1/cm) at a given frequency
8 % at temperature T (K) and buffer gas pressures PN2, PHe, and PCH4 (Torr)
9 %

10

11 %% CONSTANTS
12 global c eo h hbar kB AMU;
13 global AmCs MCs Inam vo tau;
14 global TransM numTrans;
15 global dvS12 s0 vD2;
16

17 % Physical Constants (NIST 2006 CODATA Internationally recommended values)
18 % http://physics.nist.gov/cuu/Constants/index.html
19 c = 2.99792458e8; % vacuum speed of light (m/s)
20 eo = 8.85418781762e-12; % vacuum permittivity (F/m)
21 h = 6.62606896e-34; % Planck const (Js)
22 hbar = 1.054571628e-34; % Planck const/2pi (Js)
23 kB = 1.3806504e-23; % Boltzmann const (J/K)
24 AMU = 1.660538782e-27; % Atomic Mass Unit (kg)
25

26 % Cesium Atomic Data
27 AmCs = 132.905451931; % Atomic mass (AMU)
28 MCs = AmCs*AMU; % Mass of Cs atom (kg)
29 Inam = 7/2; % Total nuclear angular momentum
30

31 % Cs D2 Data
32 vo = 351.72571850e12; % Frequency (Hz)
33 tau = 30.32e-9; % Lifetime (s) REF [1]
34 %
35 % REFERENCE:
36 % [1] J. M. Amini and H. Gould
37 % High Precision Measurement of the Static Dipole Polarizability of Cs
38 % Phys. Rev. Lett., American Physical Society, 2003, 91, 153001
39 %
40 % Transition Matrix, contains allowed transitions and pertenent quantum
41 % numbers in the format (Inam, Jupper, Flower, Fupper)
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42 % NOTE: Jlower is 1/2 (ground state)
43 % NOTE: Inam is the same for all transitions in Cs. This function was
44 % built to accomdate elements with multiple isotopes like Rubidium.
45 TransM = [7/2 3/2 3 2;
46 7/2 3/2 3 3;
47 7/2 3/2 3 4;
48 7/2 3/2 4 3;
49 7/2 3/2 4 4;
50 7/2 3/2 4 5];
51 numTrans = length(TransM);
52

53 %% Hyperfine Structure Energy Levels
54 vD2 = zeros(1,numTrans);
55 for j = 1:numTrans
56 vD2(j) = (hfsEnergy(TransM(j,1),1,TransM(j,2),TransM(j,4))/h)-...
57 (hfsEnergy(TransM(j,1),0,1/2,TransM(j,3))/h);
58 end
59 dvS12 = hfsEnergy(Inam,0,1/2,4)/h - hfsEnergy(Inam,0,1/2,3)/h;
60

61 %% Line Strength Factors, SFF
62 SFF = zeros(1,numTrans);
63 for n = 1:numTrans
64 SFF(n) = S fun(TransM(n,3),TransM(n,4),0.5,TransM(n,2),TransM(n,1));
65 end
66

67 %% Cross Section at Line Center (sigma 0)
68 s0 = zeros(1,numTrans);
69 for f = 1:numTrans
70 s0(f) = sigma 0(SFF,vD2,f);
71 end
72

73 %% main function output
74 abs = NumDensity(T)*CrossSection(freq,T,PN2,PHe,PCH4);
75

76 end %end of fnAbsCoeffCsD2 main function -------------------------------
77

78

79 %
80 %% fnAbsCoeffCsD2 SUBFUNCTIONS
81

82 %% HYPERFINE ENERGY LEVELS ------------------------------------------------
83 function [dEhfs] = hfsEnergy(Inam,L,J,F)
84 % Calculates hyperfine structure energy
85 %
86 % REFERENCES:
87 % [2] E.Arimondo, M.Inguscio, and P.Violino
88 % "Experimental determinations of the hyperfine structure...
89 % ...in the alkali atoms"
90 % Rev. Mod. Phys., American Physical Society, 1977, 49, 31-75
91 %
92 % [3] V.Gerginov, A.Derevianko, and C.E.Tanner
93 % "Observation of the Nuclear Magnetic Octupole Moment of Cs133"
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94 % Phys. Rev. Lett., American Physical Society, 2003, 91, 072501
95 %
96 global h;
97

98 %Constants
99 AS12 = h*2.2981579425*1E9; %(Hz)

100 AP12 = h*291.9201*1E6; %(Hz)
101 AP32 = h*50.28827*1E6; %(Hz)
102 BP32 = h*-0.4934*1E6; %(Hz)
103 CP32 = h*0.560*1E3; %(Hz)
104

105 K = F*(F + 1) - Inam*(Inam + 1) - J*(J + 1);
106

107 if(L == 0)
108 dEhfs = .5*AS12*K;
109 elseif(L == 1 && J == .5)
110 dEhfs = .5*AP12*K;
111 elseif(L == 1 && J == 1.5)
112 dEhfs = (.5*AP32*K) + BP32*((1.5*K*(K+1) -...
113 2*Inam*(Inam+1)*J*(J+1))/(4*Inam*(2*Inam-1)*J*(2*J-1))) +...
114 CP32*(5*(Kˆ2)*((K/4)+1) +...
115 K*(Inam*(Inam+1) + J*(J+1) + 3 - 3*Inam*(Inam+1)*J*(J+1)) -...
116 5*Inam*(Inam+1)*J*(J+1))/(Inam*(Inam-1)*(2*Inam-1)*J*(J-1)*(2*J-1));
117 else
118 fprintf('\nIMPROPER INPUTS\n\n')
119 dEhfs = 0;
120 end
121

122 end
123

124 %% LINE STRENGTH FACTORS --------------------------------------------------
125 function [S] = S fun(F,Fprime,J,Jprime,I)
126 S1 = Wigner6j(J,Jprime,1,Fprime,F,I);
127 S = (2*Fprime+1)*(2*J+1)*(S1ˆ2);
128 end
129

130 %% WIGNER 6j FACTORS ------------------------------------------------------
131 function Wigner = Wigner6j(j1,j2,j3,J1,J2,J3)
132 % Wigner 6j-symbol calculator. Written by Amita B Deb, Clarendon Lab. 2007.
133 % Improved by Richard A. Holt, Univ. of Western Ontario, 2009.
134 % Further improved to deal with large input arguments by Lee Harper,
135 % CRL Oxford, 2009.
136

137 % Builds on the m-file Wigner6jcoeff posted by Richard A. Holt.
138

139 % Calculates { j1, j2 ,j3} using Racah formula.
140 % J1 J2 J3
141 %
142 % REFERENCE:
143 % [4] I.I.Sobelman
144 % Atomic Spectra and Radiative Transitions
145 % Springer Series in Chemical Physics, Vol. 1, Springer (June 1979)

95



www.manaraa.com

146 %
147 % Finding Triangular coefficients
148 tri1 = triangle coeff(j1,j2,j3);
149 tri2 = triangle coeff(j1,J2,J3);
150 tri3 = triangle coeff(J1,j2,J3);
151 tri4 = triangle coeff(J1,J2,j3);
152

153 if (tri1==0 | |tri2==0 | |tri3==0 | |tri4==0)
154 Wigner=0;
155 return
156 end
157

158 % Finding the range of summation in the Racah formula.
159 a(1) = j1 + j2 + j3;
160 a(2) = j1 + J2 + J3;
161 a(3) = J1 + j2 + J3;
162 a(4) = J1 + J2 + j3;
163

164 rangei = max(a);
165

166 k(1) = j1 + j2 + J1 + J2;
167 k(2) = j2 + j3 + J2 + J3;
168 k(3) = j3 + j1 + J3 + J1;
169

170 rangef = min(k);
171

172 Wigner = 0;
173

174 for t=rangei:rangef
175 Wigner = Wigner + ((-1)ˆt)*exp(gammaln(t+2) -...
176 fung(t,j1,j2,j3,J1,J2,J3));
177 end
178

179 Wigner = (tri1*tri2*tri3*tri4)ˆ(0.5)*Wigner;
180

181 end
182

183 % ----- Wigner6j subfunctions ---------------------------------------------
184

185 function r = fung(t, j1,j2,j3,J1,J2,J3)
186 % Calculating the logarithm of the denominator in Racah Formula, using
187 % the gamma function in place of the factorial.
188 r = sum(gammaln([(t-j1-j2-j3);(t-j1-J2-J3);(t-J1-j2-J3);(t-J1-J2-j3);...
189 (j1+j2+J1+J2-t);(j2+j3+J2+J3-t);(j3+j1+J3+J1-t)] + 1));
190 end
191

192 %--------------------------------------------------------------------------
193 function tri = triangle coeff(a,b,c)
194 % Calculates triangle coefficients for angular momenta.
195 % This version returns 0 if the triangle inequalities are violated. (RAH)
196

197 if (a<0 | | b<0 | | c<0)
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198 tri=0;
199 return
200 end
201

202 for xa = abs(a-b):1:a+b
203 if c==xa
204 tri = factorial(a+b-c)*factorial(a-b+c)*...
205 factorial(-a+b+c)/(factorial(a+b+c+1));
206 return
207 end
208 end
209

210 tri=0;
211

212 end
213

214 %% CROSS SECTION AT LINE CENTER -------------------------------------------
215 function [s0] = sigma 0(SFF,vD,x)
216 % Calculates cross section at line center for each hyperfine level.
217 global c vo tau TransM;
218

219 dvnat = 1/(2*pi*tau); % natural linewidth
220

221 s0 = SFF(x)*(1/tau)*(((c*100)ˆ2)/(8*pi))*(1/((vo+vD(x))ˆ2))*...
222 ((2*TransM(x,2)+1)/(2*.5+1))*(2/(pi*dvnat));
223 end
224

225 %% NUMBER DENSITY ---------------------------------------------------------
226 function [ndensity] = NumDensity(T)
227 % calculates number density (cmˆ-3) given Temperature (K) from ideal gas eq
228 global kB;
229

230 ndensity = (CsVaporPressure(T))/(kB*T)*101325*(1e-6);
231 end
232

233 %% VAPOR PRESSURE ---------------------------------------------------------
234 function [Pv] = CsVaporPressure(T)
235 % Provides Cesium vapor pressure in atmospheres given Temperature (K)
236 %
237 % REFERENCE:
238 % [5] C.B.Alcock, V.P.Itkin, and M.K.Horrigan
239 % Vapour pressure equations for the metallic elements: 298-2500K
240 % Canadian Metallurgical Quarterly, 1984, 23, 309-313
241 %
242 % Uses "Precise" equation for Cs vapor pressure.
243 % Uses melting point for Cs at 301.59K (NIST value)
244 % Valid for temperatures from melting point to 550K (per Alcock et al).
245

246 if(T ≥ 301.59 && T ≤ 550)
247 a = 8.232;
248 b = -4062;
249 c = -1.3359;
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250 elseif(T < 301.59 | | T > 550)
251 fprintf('\nTemperature is outside of allowed range.\n\n')
252 return
253 end
254 Pv = 10.ˆ(a + b*(Tˆ-1) + c*log10(T));
255 end
256

257 %% CROSS SECTION ----------------------------------------------------------
258 function [cs] = CrossSection(x,T,PN2,PHe,PCH4)
259 % calculates cross section as function of frequency, x
260 global tau s0 vo TransM vD2;
261

262 dvnat = 1/(2*pi*tau);
263 [gamma,shift,dvD,dvL] = BufferGas(T,PN2,PHe,PCH4);
264

265 cs = (dvnat*pi/2)*(...
266 BoltzRatio(TransM(1,3),T)*s0(1)*...
267 ((x+vD2(1)+shift+vo)/(vD2(1)+shift+vo))*...
268 gVoigt((x-vD2(1)),dvL,dvD)+...
269 BoltzRatio(TransM(2,3),T)*s0(2)*...
270 ((x+vD2(2)+shift+vo)/(vD2(2)+shift+vo))*...
271 gVoigt((x-vD2(2)),dvL,dvD)+...
272 BoltzRatio(TransM(3,3),T)*s0(3)*...
273 ((x+vD2(3)+shift+vo)/(vD2(3)+shift+vo))*...
274 gVoigt((x-vD2(3)),dvL,dvD)+...
275 BoltzRatio(TransM(4,3),T)*s0(4)*...
276 ((x+vD2(4)+shift+vo)/(vD2(4)+shift+vo))*...
277 gVoigt((x-vD2(4)),dvL,dvD)+...
278 BoltzRatio(TransM(5,3),T)*s0(5)*...
279 ((x+vD2(5)+shift+vo)/(vD2(5)+shift+vo))*...
280 gVoigt((x-vD2(5)),dvL,dvD)+...
281 BoltzRatio(TransM(6,3),T)*s0(6)*...
282 ((x+vD2(6)+shift+vo)/(vD2(6)+shift+vo))*...
283 gVoigt((x-vD2(6)),dvL,dvD));
284 end
285

286 %% BUFFER GAS EFFECTS -----------------------------------------------------
287 function [gamma,shift,dvD,dvL] = BufferGas(T,PN2,PHe,PCH4)
288 % Cs D2 buffer gas effects, including broadening and frequency shift
289 % OUTPUT: gamma pressure broadening due to buffer gas
290 % shift frequency shift due to buffer gas
291 % dvD Doppler broadening
292 % dvL Lorentzian homogeneous broadening (natural + pressure)
293 %
294 % REFERENCES:
295 % [6] A.Andalkar and R.B.Warrington
296 % High-resolution measurement of the pressure broadening and shift
297 % of the Cs D1 and D2 lines by N2 and He buffer gases
298 % Phys. Rev. A 65, 032708 (2002)
299 %
300 % [7] G. Pitz, D. Wertepny, and G. Perram
301 % Pressure broadening and shift of the cesium D1 transition by the
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302 % noble gases and N2, H2, HD, D2, CH4, C2H6, CF4, and 3He
303 % Phys. Rev. A 80, 062718 (2009)
304 %
305 % Pressure broadening coefficients are temperature dependent such that
306 % (gamma or shift)*((T/Tdata)ˆ(1/2))*Pressure
307 % where
308 % gamma or shift are the broadening or shift values (MHz/Torr)
309 % T is the current temperature
310 % Tdata is the temperature at which buffer gas values were measured
311 %
312 % Pressure effect values and Tdata below are taken from reference [2].
313

314 global tau c kB MCs vo;
315

316 gamma = (19.18e6)*((T/313)ˆ(1/2))*PN2 ...
317 + (20.59e6)*((T/313)ˆ(1/2))*PHe...
318 + (25.84e6)*((T/313)ˆ(1/2))*PCH4;
319 shift = (-6.2e6)*((T/313)ˆ(1/2))*PN2...
320 + (0.69e6)*((T/313)ˆ(1/2))*PHe...
321 + (-8.86e6)*((T/313)ˆ(1/2))*PCH4;
322

323 dvD = (vo + shift)*((8*kB*T*log(2))/(MCs*(cˆ2)))ˆ(1/2);
324 dvL = (1/(2*pi*tau)) + gamma;
325 end
326

327 %% BOLTZMAN RATIO ---------------------------------------------------------
328 function [BR] = BoltzRatio(F,T)
329 % Calculates relative Boltzman distribution of ground state energy levels.
330 global kB h dvS12;
331

332 if(F == 3)
333 BR = 7./(7 + 9*exp(-(h*dvS12)./(kB.*T)));
334 elseif(F == 4)
335 BR = (9*exp(-(h*dvS12)./(kB.*T)))./(7 + 9*exp(-(h*dvS12)./(kB.*T)));
336 elseif(F 6= 3 && F 6= 4)
337 fprintf('\nIMPROPER INPUTS\n\n')
338 BR = 0;
339 end
340 end
341

342 %% VOIGT LINESHAPE --------------------------------------------------------
343 function [y] = gVoigt(v,dvL,dvD)
344 % A useful approximation for the Voigt convolution is given by Thompson
345 %
346 % REFERENCE:
347 % [8] William J. Thompson
348 % Numerous neat algorithms for the Voigt profile function.
349 % Computers in Physics, Vol 7, No. 6, Nov/Dec 1993.
350 %
351 % gV(u,a) = Re[Exp(zˆ2)erfc(z)]
352 % z = a + iu
353 % a = sqrt(ln(2)) vLorentzian/vDoppler
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354 % u = 2 sqrt(ln(2)) (v-vo)/vDoppler
355

356 % NOTE: Not valid for Doppler free spectra where vDoppler = 0
357 % NOTE: erfc(z) = 1 - erf(z) (related to the Faddeeva function)
358

359 a = sqrt(log(2))*(dvL/dvD);
360 u = 2*sqrt(log(2))*(v/dvD);
361 z = a + 1i*u;
362 y = 2*sqrt(log(2)/pi)*(1/dvD)*real(faddeeva(1i*z));
363 end
364

365 % ----- gVoigt subfunctions -----------------------------------------------
366

367 function w = faddeeva(z,N)
368 %--------------------------------------------------------------------------
369 % http://www.mathworks.com/matlabcentral/fileexchange/...
370 % ...22207-faddeeva-function-fft-based
371 % Posted by Kesh (tikuma@lsu.edu) - 21 Nov 2008 (Updated 19 Feb 2009)
372 %--------------------------------------------------------------------------
373 % FADDEEVA Faddeeva function
374 % W = FADDEEVA(Z) is the Faddeeva function, aka the plasma dispersion
375 % function, for each element of Z. The Faddeeva function is defined as:
376 %
377 % w(z) = exp(-zˆ2) * erfc(-j*z)
378 %
379 % where erfc(x) is the complex complementary error function.
380 %
381 % W = FADDEEVA(Z,N) can be used to explicitly specify the number of terms
382 % to truncate the expansion (see (13) in [1]). N = 16 is used as default.
383 %
384 % Example:
385 % x = linspace(-10,10,1001); [X,Y] = meshgrid(x,x);
386 % W = faddeeva(complex(X,Y));
387 % figure;
388 % subplot(121); imagesc(x,x,real(W)); axis xy square; caxis([-1 1]);
389 % title('re(faddeeva(z))'); xlabel('re(z)'); ylabel('im(z)');
390 % subplot(122); imagesc(x,x,imag(W)); axis xy square; caxis([-1 1]);
391 % title('im(faddeeva(z))'); xlabel('re(z)'); ylabel('im(z)');
392 %
393 % Reference:
394 % [9] J.A.C. Weideman, "Computation of the Complex Error Function," SIAM
395 % J. Numerical Analysis, pp. 1497-1518, No. 5, Vol. 31, Oct., 1994
396 % Available Online: http://www.jstor.org/stable/2158232
397 %
398 if nargin<2, N = []; end
399 if isempty(N), N = 16; end
400

401 w = zeros(size(z)); % initialize output
402

403 %%%%%
404 % for purely imaginary-valued inputs, use erf as is if z is real
405 idx = real(z)==0; %
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406 w(idx) = exp(-z(idx).ˆ2).*erfc(imag(z(idx)));
407

408 if all(idx), return; end
409 idx = ¬idx;
410

411 %%%%%
412 % for complex-valued inputs
413

414 % make sure all points are in the upper half-plane (positive imag. values)
415 idx1 = idx & imag(z)<0;
416 z(idx1) = conj(z(idx1));
417

418 M = 2*N;
419 M2 = 2*M;
420 k = (-M+1:1:M-1)'; % M2 = no. of sampling points.
421 L = sqrt(N/sqrt(2)); % Optimal choice of L.
422

423 theta = k*pi/M;
424 t = L*tan(theta/2); % Variables theta and t.
425 f = exp(-t.ˆ2).*(Lˆ2+t.ˆ2);
426 f = [0; f]; % Function to be transformed.
427 a = real(fft(fftshift(f)))/M2; % Coefficients of transform.
428 a = flipud(a(2:N+1)); % Reorder coefficients.
429

430 Z = (L+1i*z(idx))./(L-1i*z(idx));
431 p = polyval(a,Z); % Polynomial evaluation.
432 w(idx) = 2*p./(L-1i*z(idx)).ˆ2 + (1/sqrt(pi))./(L-1i*z(idx)); % Eval w(z).
433

434 % convert the upper half-plane results to the lower half-plane if necesary
435 w(idx1) = conj(2*exp(-z(idx1).ˆ2) - w(idx1));
436

437 end
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Absorption Coefficient Changes for Cs D1

The previous Matlabr code example can be easily modified for cesium D1 or

any other atomic species with a single isotope. To change the Matlabr absorption

coefficient function on page C for cesium D1, make the following modifications at

the appropriate places within the code. To modify use of this code for other atomic

elements, be sure to modify vapor pressure and buffer gas effect functions.

1 % Cs D1 Data
2 vo = 335.116048807e12; % Frequency (Hz)
3 tau = 34.72e-9; % Lifetime (s)
4 TransM = [7/2 1/2 3 3;
5 7/2 1/2 3 4;
6 7/2 1/2 4 3;
7 7/2 1/2 4 4];
8 %hfsEnergy Constants...
9 AS12 = h*2.2981579425*1E9; %(Hz)

10 AP12 = h*291.9201*1E6; %(Hz)
11 AP32 = h*50.28827*1E6; %(Hz)
12 BP32 = h*-0.4934*1E6; %(Hz)
13 CP32 = h*0.560*1E3; %(Hz)
14 %fnCrossSection.....
15 cs = (dvnat*pi/2)*(...
16 BoltzRatio(TransM(1,3),T)*s0(1).*...
17 ((x+vD1(1)+shift+vo)/(vD1(1)+shift+vo)).*...
18 gVoigt((x-vD1(1)),dvL,dvD)+...
19 BoltzRatio(TransM(2,3),T)*s0(2).*...
20 ((x+vD1(2)+shift+vo)/(vD1(2)+shift+vo)).*...
21 gVoigt((x-vD1(2)),dvL,dvD)+...
22 BoltzRatio(TransM(3,3),T)*s0(3).*...
23 ((x+vD1(3)+shift+vo)/(vD1(3)+shift+vo)).*...
24 gVoigt((x-vD1(3)),dvL,dvD)+...
25 BoltzRatio(TransM(4,3),T)*s0(4).*...
26 ((x+vD1(4)+shift+vo)/(vD1(4)+shift+vo)).*...
27 gVoigt((x-vD1(4)),dvL,dvD));
28 %BufferGasEffects...
29 gamma = (15.82e6)*((T/318)ˆ(1/2))*PN2 ...
30 + (24.13e6)*((T/323)ˆ(1/2))*PHe...
31 + (29.00e6)*((T/333)ˆ(1/2))*PCH4;
32 shift = (-7.69e6)*((T/318)ˆ(1/2))*PN2...
33 + (4.24e6)*((T/323)ˆ(1/2))*PHe...
34 + (-9.28e6)*((T/333)ˆ(1/2))*PCH4;
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Cesium D2 Hyperfine Energy Level

The following code sample is a code snippet that calculates the cesium D2 hyper-

fine energy.

1 function [dEhfs] = hfsEnergy(Inam,L,J,F)
2 % Calculates hyperfine structure energy for Cs D2. Given Inam, L, J and F
3 % calculates the hyperfine energy difference.
4 %
5 % REFERENCES:
6 % Arimondo, E., Inguscio, M. and Violino, P.
7 % Experimental determinations of the hyperfine structure in the alkali atoms
8 % Rev. Mod. Phys., American Physical Society, 1977, 49, 31-75
9 %

10 % Gerginov, V.; Derevianko, A. & Tanner, C. E.
11 % Observation of the Nuclear Magnetic Octupole Moment of Cs133
12 % Phys. Rev. Lett., American Physical Society, 2003, 91, 072501
13 %
14 global h;
15

16 %Constants
17 AS12 = h*2.2981579425*1E9; %(Hz)
18 AP12 = h*291.9201*1E6; %(Hz)
19 AP32 = h*50.28827*1E6; %(Hz)
20 BP32 = h*-0.4934*1E6; %(Hz)
21 CP32 = h*0.560*1E3; %(Hz)
22

23 K = F*(F + 1) - Inam*(Inam + 1) - J*(J + 1);
24

25 if(L == 0)
26 dEhfs = .5*AS12*K;
27 elseif(L == 1 && J == .5)
28 dEhfs = .5*AP12*K;
29 elseif(L == 1 && J == 1.5)
30 dEhfs = (.5*AP32*K) + BP32*((1.5*K*(K+1) - ...
31 2*Inam*(Inam+1)*J*(J+1))/(4*Inam*(2*Inam-1)*J*(2*J-1))) +...
32 CP32*(5*(Kˆ2)*((K/4)+1) + K*(Inam*(Inam+1) + J*(J+1) + 3 - ...
33 3*Inam*(Inam+1)*J*(J+1)) -...
34 5*Inam*(Inam+1)*J*(J+1))/(Inam*(Inam-1)*(2*Inam-1)*J*(J-1)*(2*J-1));
35 else
36 fprintf('\nIMPROPER INPUTS\n\n')
37 dEhfs = 0;
38 end
39

40 %end of function
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Rubidium D1 Absorption Coefficient

The absolute absorption of the rubidium D lines compares favorably to the theo-

retical and experimental results reported by Siddons et al.(Siddons et al., 2008).

1 function [abs] = fnAbsCoeffRbD1(freq,T,PHe,PCH4)
2 % Calculates rubidum D1 absorption coefficent (1/cm) at a given frequency
3 % at temperature T (K) and buffer gas pressures PHe and PCH4 (Torr)
4 %-------------------------------------------------------------------------
5 % Monte Anderson
6 % Air Force Institute of Technology, Department of Engineering Physics
7 %
8 % 27 Oct 2009
9 %=========================================================================

10

11 %% CONSTANTS
12 global c eo h hbar kB AMU;
13 global AmRb85 MRb85 Inam85 vo85 tau;
14 global AmRb87 MRb87 Inam87 vo87;
15 global TransM numTrans;
16 global dv85S12 dv87S12 s0 vHF;
17

18 % Physical Constants (NIST)
19 c = 2.99792458e8; % vacuum speed of light (m/s)
20 eo = 8.85418781762e-12; % vacuum permittivity (F/m)
21 h = 6.62606896e-34; % Planck const (Js)
22 hbar = 1.054571628e-34; % Planck const/2pi (Js)
23 kB = 1.3806504e-23; % Boltzmann const (J/K)
24 AMU = 1.660538782e-27; % Atomic Mass Unit (kg)
25

26 % Rubidium Atomic Data
27 AmRb85 = 84.911789732; % Atomic mass (AMU) of Rb85
28 AmRb87 = 86.909180520; % Atomic mass (AMU) of Rb87
29 MRb85 = AmRb85*AMU; % Mass of Rb85 atom (kg)
30 MRb87 = AmRb87*AMU; % Mass of Rb87 atom (kg)
31 Inam85 = 5/2; % Total nuclear angular momentum Rb85
32 Inam87 = 3/2; % Total nuclear angular momentum Rb87
33

34 % Rb D1 Data
35 vo85 = 377.107385690e12; % Frequency (Hz) Rb85
36 vo87 = 377.1074633805e12; % Frequency (Hz) Rb87
37 tau = 27.679e-9; % Lifetime (s) Rb85 and Rb87
38

39 % REFERENCES
40

41

42 % Transition Matrix, contains allowed transitions and pertenent quantum
43 % numbers in the format (Inam, Jupper, Flower, Fupper)
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44 % NOTE: Jlower is 1/2 (ground state).
45 TransM = [5/2 1/2 2 2;
46 5/2 1/2 2 3;
47 5/2 1/2 3 2;
48 5/2 1/2 3 3;
49 3/2 1/2 1 1;
50 3/2 1/2 1 2;
51 3/2 1/2 2 1;
52 3/2 1/2 2 2];
53 numTrans = length(TransM);
54

55 %% Hyperfine Structure - Transition Frequencies (from TransM)
56 vHF = zeros(1,numTrans);
57 for j = 1:numTrans
58 vHF(j) = (hfsEnergyRb(TransM(j,1),1,TransM(j,2),TransM(j,4))/h)-...
59 (hfsEnergyRb(TransM(j,1),0,1/2,TransM(j,3))/h) + dvIso(TransM(j,1));
60 end
61 dv85S12 = hfsEnergyRb(Inam85,0,1/2,3)/h - hfsEnergyRb(Inam85,0,1/2,2)/h;
62 dv87S12 = hfsEnergyRb(Inam87,0,1/2,2)/h - hfsEnergyRb(Inam87,0,1/2,1)/h;
63

64 %% Line Strength Factors, SFF
65 SFF = zeros(1,numTrans);
66 for n = 1:numTrans
67 SFF(n) = S fun(TransM(n,3),TransM(n,4),0.5,TransM(n,2),TransM(n,1));
68 end
69

70 %% Cross Section at Line Center (sigma 0)
71 s0 = zeros(1,numTrans);
72 for f = 1:numTrans
73 s0(f) = sigma 0Rb(SFF,vHF,f);
74 end
75

76 %% main function output
77 abs = NumDensityRb(T)*CrossSectionRb(freq,T,PHe,PCH4);
78

79 end %end of fnAbsCoeffRbD1 main function ------------------------------
80

81

82

83 %% fnAbsCoeffRbD1 SUBFUNCTIONS ============================================
84

85

86 %% HYPERFINE ENERGY LEVELS -----------------------------------------------
87 function [dEhfs] = hfsEnergyRb(Inam,L,J,F)
88 % Calculates hyperfine structure energy for Rb D1 and D2.
89 %
90 % REFERENCES:
91 % Arimondo, E., Inguscio, M. and Violino, P.
92 % Experimental determinations of the hyperfine structure inthe alkali atoms
93 % Rev. Mod. Phys., American Physical Society, 1977, 49, 31-75
94 %
95 global h Inam85 Inam87;
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96

97 %Constants Rb85
98 A85S12 = h*1.0119108130e9; %(Hz)
99 A85P12 = h*120.527e6; %(Hz)

100 A85P32 = h*25.0020e6; %(Hz)
101 B85P32 = h*25.790e6; %(Hz)
102

103 %Constants Rb87
104 A87S12 = h*3.417341305452145e9; %(Hz)
105 A87P12 = h*407.24e6; %(Hz)
106 A87P32 = h*84.7185e6; %(Hz)
107 B87P32 = h*12.4965e6; %(Hz)
108

109 K = F*(F + 1) - Inam*(Inam + 1) - J*(J + 1);
110

111 if (Inam == Inam85) % Rb85 hyperfine energy levels
112 if(L == 0)
113 dEhfs = .5*A85S12*K;
114 elseif(L == 1 && J == .5)
115 dEhfs = .5*A85P12*K;
116 elseif(L == 1 && J == 1.5)
117 dEhfs = (.5*A85P32*K) + B85P32*((1.5*K*(K+1) -...
118 2*Inam*(Inam+1)*J*(J+1))/(4*Inam*(2*Inam-1)*J*(2*J-1)));
119 else
120 fprintf('\nIMPROPER INPUT-Hyperfine energy lvl determination\n\n')
121 dEhfs = 0;
122 end
123 elseif (Inam == Inam87) % Rb87 hyperfine energy levels
124 if(L == 0)
125 dEhfs = .5*A87S12*K;
126 elseif(L == 1 && J == .5)
127 dEhfs = .5*A87P12*K;
128 elseif(L == 1 && J == 1.5)
129 dEhfs = (.5*A87P32*K) + B87P32*((1.5*K*(K+1) -...
130 2*Inam*(Inam+1)*J*(J+1))/(4*Inam*(2*Inam-1)*J*(2*J-1)));
131 else
132 fprintf('\nIMPROPER INPUT-Hyperfine energy lvl determination\n\n')
133 dEhfs = 0;
134 end
135 else
136 fprintf('\nIMPROPER INPUT-Hyperfine energy lvl determination\n\n')
137 dEhfs = 0;
138 end
139

140 end %end of function
141

142 %Hyperfine subfunction
143 function dviso = dvIso(Inam)
144 % Provides Isotope shift for Rb85 - all frequencies relative to Rb87.
145 global vo85 vo87 Inam85;
146

147 dvo = vo87 - vo85; % Isotope's hyperfine spectrum rel. to same
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148 % central frquency vo so that
149 % voRb85 + dviso = voRb87
150

151 if (Inam == Inam85)
152 dviso = dvo;
153 else
154 dviso = 0;
155 end
156

157 end
158

159

160 %% LINE STRENGTH FACTORS -------------------------------------------------
161 function [S] = S fun(F,Fprime,J,Jprime,I)
162 S1 = Wigner6j(J,Jprime,1,Fprime,F,I);
163 S = (2*Fprime+1)*(2*J+1)*(S1ˆ2);
164

165 end %end of function
166

167

168 %% WIGNER 6j FACTORS -----------------------------------------------------
169 function Wigner = Wigner6j(j1,j2,j3,J1,J2,J3)
170 % Wigner 6j-symbol calculator. Written by Amita B Deb, Clarendon Lab. 2007.
171 % Improved by Richard A. Holt, Univ. of Western Ontario, 2009.
172 % Further improved to deal with large input arguments by Lee Harper,
173 % CRL Oxford, 2009.
174

175 % Builds on the m-file Wigner6jcoeff posted by Richard A. Holt.
176

177 % Calculates { j1, j2 ,j3} using Racah formula.
178 % J1 J2 J3
179

180 % Finding Triangular coefficients
181

182 tri1 = triangle coeff(j1,j2,j3);
183 tri2 = triangle coeff(j1,J2,J3);
184 tri3 = triangle coeff(J1,j2,J3);
185 tri4 = triangle coeff(J1,J2,j3);
186

187 if (tri1==0 | |tri2==0 | |tri3==0 | |tri4==0)
188 Wigner=0;
189 return
190 end
191

192 % Finding the range of summation in the Racah formula.
193

194 a(1) = j1 + j2 + j3;
195 a(2) = j1 + J2 + J3;
196 a(3) = J1 + j2 + J3;
197 a(4) = J1 + J2 + j3;
198

199 rangei = max(a);
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200

201 k(1) = j1 + j2 + J1 + J2;
202 k(2) = j2 + j3 + J2 + J3;
203 k(3) = j3 + j1 + J3 + J1;
204

205 rangef = min(k);
206

207 Wigner = 0;
208

209 for t=rangei:rangef
210

211 Wigner = Wigner + ((-1)ˆt)*exp(gammaln(t+2) -...
212 fung(t,j1,j2,j3,J1,J2,J3));
213

214 end
215

216 Wigner = (tri1*tri2*tri3*tri4)ˆ(0.5)*Wigner;
217

218 end
219

220 % ----- Wigner6j subfunctions --------------
221 function r = fung(t, j1,j2,j3,J1,J2,J3)
222 % Calculating the logarithm of the denominator in Racah Formula, using
223 % the gamma function in place of the factorial.
224 r = sum(gammaln([(t-j1-j2-j3);(t-j1-J2-J3);(t-J1-j2-J3);(t-J1-J2-j3);...
225 (j1+j2+J1+J2-t);(j2+j3+J2+J3-t);(j3+j1+J3+J1-t)] + 1));
226

227 end
228

229 %-------------------------------------------
230 function tri = triangle coeff(a,b,c)
231 % Calculates triangle coefficients for angular momenta.
232 % This version returns 0 if the triangle inequalities are violated. (RAH)
233

234 if (a<0 | | b<0 | | c<0)
235 tri=0;
236 return
237 end
238

239 for xa = abs(a-b):1:a+b
240 if c==xa
241 tri = factorial(a+b-c)*factorial(a-b+c)*...
242 factorial(-a+b+c)/(factorial(a+b+c+1));
243 return
244 end
245 end
246

247 tri=0;
248

249 end %end of function
250

251
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252 %% CROSS SECTION AT LINE CENTER ------------------------------------------
253 function [s0] = sigma 0Rb(SFF,vD,x)
254 % Calculates cross section at line center for each hyperfine transition
255 global c vo85 vo87 tau TransM Inam85 Inam87;
256

257 if (TransM(x,1)==Inam85)
258 vo = vo85;
259 elseif (TransM(x,1)==Inam87)
260 vo = vo87;
261 else
262 fprintf('\nERROR in sigma 0Rb -- Inam is outside allowed range.\n\n');
263 return;
264 end
265

266 dvnat = 1/(2*pi*tau);
267

268 s0 = SFF(x)*(1/tau)*(((c*100)ˆ2)/(8*pi))*(1/((vo+vD(x))ˆ2))*...
269 ((2*TransM(x,2)+1)/(2*.5+1))*(2/(pi*dvnat));
270

271 end
272

273

274 %% NUMBER DENSITY --------------------------------------------------------
275 function [ndensity] = NumDensityRb(T)
276 % calculates number density (cmˆ-3) given Temperature in Kelvin
277 global kB;
278

279 ndensity = (RbVaporPressure(T))/(kB*T)*101325*(1e-6);
280 end
281

282

283 %% VAPOR PRESSURE --------------------------------------------------------
284 function [Pv] = RbVaporPressure(T)
285 % Provides rubidium vapor pressure in atmospheres given T in Kelvin
286 %
287 % REFERENCE:
288 % C.B.Alcock, V.P.Itkin, and M.K.Horrigan
289 % Vapour pressure equations for the metallic elements: 298-2500K
290 % Canadian Metallurgical Quarterly, 1984, 23, 309-313
291 %
292 % "Precise" equation for Rb vapour pressure.
293 % Uses melting point for Rb at 312.45K (39.30 degC)
294 % Valid for temperatures from melting point to 550K.
295 %
296 % "Practical" equations for RB are used from 298K to melting point.
297 % There is a discontinuity at 312.45K. Yields +/-5% or better precision.
298 % For best precision, use temperatures between melting point and 550K.
299

300 if(T ≥ 312.45 && T ≤ 550)
301 a = 8.316;
302 b = -4275;
303 c = -1.3102;
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304 Pv = 10.ˆ(a + b*(Tˆ-1) + c*log10(T));
305 elseif (T ≥ 298 && T < 312.45)
306 a = 4.857;
307 b = -4040;
308 Pv = 10.ˆ(a + b*(Tˆ-1));
309 elseif (T < 298 | | T > 550)
310 fprintf('\nTemperature is outside of allowed range.\n\n')
311 return
312 end
313

314 end
315

316

317 %% CROSS SECTION ---------------------------------------------------------
318 function [cs] = CrossSectionRb(x,T,PHe,PCH4)
319 % Calculates cross section as function of frequency, x
320 global tau s0 vo85 vo87 TransM vHF numTrans Inam85 Inam87;
321

322 dvnat = 1/(2*pi*tau); % natural linewidth, ∆ nu natural
323 csHF = zeros(1,numTrans); % Cross section for an individual HF transition
324

325 temp = 0;
326 for n = 1:numTrans
327 Inam = TransM(n,1);
328 Flwr = TransM(n,3);
329 [gamma,shift,dvD,dvL] = BufferGasRb(T,Inam,PHe,PCH4);
330 if (Inam == Inam85) % Set central frequency based on isotope (Inam)
331 vo = vo85;
332 elseif (Inam == Inam87)
333 vo = vo87;
334 else
335 fprintf('\nERROR in CrossSectionRB-Inam is outside range.\n\n');
336 return;
337 end
338 csHF = RbNatAbundance(Inam) * BoltzRatioRb(Inam,Flwr,T) * s0(n) * ...
339 ((x + vHF(n) + shift + vo) / (vHF(n) + shift + vo)) * ...
340 gVoigt((x - vHF(n)),dvL,dvD);
341 temp = temp + csHF;
342 end
343

344 cs = (dvnat*pi/2) * temp;
345

346 end
347

348 function eta = RbNatAbundance(Inam)
349 % Return Rubidium natural abundance based on Total nuclear angular momentum
350 Eta85 = 0.7217;
351 Eta87 = 0.2783;
352

353 if (Inam == 5/2)
354 eta = Eta85;
355 return;
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356 elseif (Inam == 3/2)
357 eta = Eta87;
358 return;
359 else
360 fprintf('\nInam is outside of allowed range for Rb85 or Rb87.\n\n');
361 return;
362 end
363

364 end
365

366 %% BUFFER GAS EFFECTS ----------------------------------------------------
367 function [gamma,shift,dvD,dvL] = BufferGasRb(T,Inam,PHe,PCH4)
368 % Rb buffer gas effects - pressure broadening and frequency shift
369 %
370 % REFERENCE:
371 % Rotondaro, M. D. & Perram, G. P.
372 % Collisional broadening and shift of the rubidium D1 and D2 lines
373 % (5ˆ2S 1/2 -> 5ˆ2P 1/2, 5ˆ2S 1/2 -> 5ˆ2P 3/2) by rare gases,
374 % H 2, D 2, N 2, CH 4, and CF 4
375 % Journal of Quan. Spect. and Radiative Transfer, 1997, 57, 497-507
376

377 global tau c kB MRb85 MRb87 vo85 vo87 Inam85 Inam87 TransM;
378

379 Tdata = 394.15; % Temperature (K) at which buffer gas values were measured
380

381 % Set effect constants based on D1 or D2 line (J upper).
382 if (TransM(1,2)==1/2) %D1 values
383 gammaHe = 18.9e6; % MHz/Torr
384 shiftHe = 4.71e6; % MHz/Torr
385 gammaCH4 = 29.1e6; % MHz/Torr
386 shiftCH4 = -7.92e6; % MHz/Torr
387 else %D2 values
388 gammaHe = 20.0e6; % MHz/Torr
389 shiftHe = 0.37e6; % MHz/Torr
390 gammaCH4 = 26.2e6; % MHz/Torr
391 shiftCH4 = -7.00e6; % MHz/Torr
392 end
393

394 % Set central frequency and mass based on isotope
395 if (Inam == Inam85)
396 vo = vo85;
397 MRb = MRb85;
398 elseif (Inam == Inam87)
399 vo = vo87;
400 MRb = MRb87;
401 else
402 fprintf('\nERROR in BufferGasRb-Inam is outside range.\n\n');
403 return;
404 end
405

406 gamma = (gammaHe)*((T/Tdata)ˆ(1/2))*PHe +(gammaCH4)*((T/Tdata)ˆ(1/2))*PCH4;
407 shift = (shiftHe)*((T/Tdata)ˆ(1/2))*PHe +(shiftCH4)*((T/Tdata)ˆ(1/2))*PCH4;
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408 dvD = (vo + shift)*((8*kB*T*log(2))/(MRb*(cˆ2)))ˆ(1/2);
409 dvL = (1/(2*pi*tau)) + gamma;
410 end
411

412

413 %% BOLTZMAN RATIO --------------------------------------------------------
414 function [BR] = BoltzRatioRb(Inam,F,T)
415 global kB h dv85S12 dv87S12 Inam85 Inam87;
416

417 if (Inam == Inam85)
418 if(F == 2)
419 BR = 5./(5 + 7*exp(-(h*dv85S12)./(kB.*T)));
420 elseif(F == 3)
421 BR=(7*exp(-(h*dv85S12)./(kB.*T)))./(5+7*exp(-(h*dv85S12)./(kB.*T)));
422 elseif(F 6= 2 && F 6= 3)
423 fprintf('\nIMPROPER INPUTS\n\n')
424 BR = 0;
425 end
426 elseif (Inam == Inam87)
427 if(F == 1)
428 BR = 3./(3 + 5*exp(-(h*dv87S12)./(kB.*T)));
429 elseif(F == 2)
430 BR=(5*exp(-(h*dv87S12)./(kB.*T)))./(3+5*exp(-(h*dv87S12)./(kB.*T)));
431 elseif(F 6= 1 && F 6= 2)
432 fprintf('\nIMPROPER INPUTS\n\n')
433 BR = 0;
434 end
435 else
436 fprintf('\nIMPROPER INPUTS\n\n')
437 BR = 0;
438 end
439

440 end
441

442

443 %% VOIGT LINESHAPE -------------------------------------------------------
444 function [y] = gVoigt(v,dvL,dvD)
445 % A useful approximation for the Voigt convolution is given by Thompson
446 %
447 % REFERENCE:
448 % William J. Thompson
449 % Numerous neat algorithms for the Voigt profile function.
450 % Computers in Physics, Vol 7, No. 6, Nov/Dec 1993.
451 %
452 % gV(u,a) = Re[Exp(zˆ2)erfc(z)]
453 % z = a + iu
454 % a = sqrt(ln(2)) vLorentzian/vDoppler
455 % u = 2 sqrt(ln(2)) (v-vo)/vDoppler
456

457 % NOTE: Not valid for Doppler free spectra where vDoppler = 0
458 % NOTE: erfc(z) = 1 - erf(z) (related to the Faddeeva function)
459
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460 a = sqrt(log(2))*(dvL/dvD);
461 u = 2*sqrt(log(2))*(v/dvD);
462 z = a + 1i*u;
463 y = 2*sqrt(log(2)/pi)*(1/dvD)*real(faddeeva(1i*z));
464 end
465

466 % ----- gVoigt subfunctions --------------
467

468 function w = faddeeva(z,N)
469 % FADDEEVA Faddeeva function
470 % W = FADDEEVA(Z) is the Faddeeva function, aka the plasma dispersion
471 % function, for each element of Z. The Faddeeva function is defined as:
472 %
473 % w(z) = exp(-zˆ2) * erfc(-j*z)
474 %
475 % where erfc(x) is the complex complementary error function.
476 %
477 % W = FADDEEVA(Z,N) can be used to explicitly specify the number of terms
478 % to truncate the expansion (see (13) in [1]). N = 16 is used as default.
479 %
480 % Example:
481 % x = linspace(-10,10,1001); [X,Y] = meshgrid(x,x);
482 % W = faddeeva(complex(X,Y));
483 % figure;
484 % subplot(121); imagesc(x,x,real(W)); axis xy square; caxis([-1 1]);
485 % title('re(faddeeva(z))'); xlabel('re(z)'); ylabel('im(z)');
486 % subplot(122); imagesc(x,x,imag(W)); axis xy square; caxis([-1 1]);
487 % title('im(faddeeva(z))'); xlabel('re(z)'); ylabel('im(z)');
488 %
489 % Reference:
490 % [1] J.A.C. Weideman, "Computation of the Complex Error Function," SIAM
491 % J. Numerical Analysis, pp. 1497-1518, No. 5, Vol. 31, Oct., 1994
492 % Available Online: http://www.jstor.org/stable/2158232
493

494 if nargin<2, N = []; end
495 if isempty(N), N = 16; end
496

497 w = zeros(size(z)); % initialize output
498

499 %%%%%
500 % for purely imaginary-valued inputs, use erf as is if z is real
501 idx = real(z)==0; %
502 w(idx) = exp(-z(idx).ˆ2).*erfc(imag(z(idx)));
503

504 if all(idx), return; end
505 idx = ¬idx;
506

507 %%%%%
508 % for complex-valued inputs
509

510 % make sure all points are in the upper half-plane (positive imag. values)
511 idx1 = idx & imag(z)<0;
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512 z(idx1) = conj(z(idx1));
513

514 M = 2*N;
515 M2 = 2*M;
516 k = (-M+1:1:M-1)'; % M2 = no. of sampling points.
517 L = sqrt(N/sqrt(2)); % Optimal choice of L.
518

519 theta = k*pi/M;
520 t = L*tan(theta/2); % Variables theta and t.
521 f = exp(-t.ˆ2).*(Lˆ2+t.ˆ2);
522 f = [0; f]; % Function to be transformed.
523 a = real(fft(fftshift(f)))/M2; % Coefficients of transform.
524 a = flipud(a(2:N+1)); % Reorder coefficients.
525

526 Z = (L+1i*z(idx))./(L-1i*z(idx));
527 p = polyval(a,Z); % Polynomial evaluation.
528 w(idx) = 2*p./(L-1i*z(idx)).ˆ2 + (1/sqrt(pi))./(L-1i*z(idx)); % Evaluate w(z).
529

530 % convert the upper half-plane results to the lower half-plane if necesary
531 w(idx1) = conj(2*exp(-z(idx1).ˆ2) - w(idx1));
532

533 end
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Absorption Coefficient Changes for Rb D2

The previous Matlabr code example can be easily modified for rubidium D2 or

any other atomic species with multiple isotopes. To change the Matlabr absorption

coefficient function on page C for rubidium D2 make the following modifications at

the appropriate places within the code. To modify use of this code for other atomic

elements, be sure to modify vapor pressure and buffer gas effect functions.

1 % Contstants...
2 % Rb D2 Data
3 vo85 = 384.230406373e12; % Frequency (Hz) Rb85
4 vo87 = 384.2304844685e12; % Frequency (Hz) Rb87
5 tau = 26.2348e-9; % Lifetime (s) Rb85 and Rb87
6 TransM = [5/2 3/2 2 1;
7 5/2 3/2 2 2;
8 5/2 3/2 2 3;
9 5/2 3/2 3 2;

10 5/2 3/2 3 3;
11 5/2 3/2 3 4;
12 3/2 3/2 1 0;
13 3/2 3/2 1 1;
14 3/2 3/2 1 2;
15 3/2 3/2 2 1;
16 3/2 3/2 2 2;
17 3/2 3/2 2 3];
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Sample Cesium Absorption Coefficient Code

The following code sample illustrates use of Matlabr functions fnAbsCoeffCsD2.m,

fnAbsCoeffCsD1.m and fnAbsCoeffCsD2SingleHFLine.m creating figure output as

shown in Figure 46.

Figure 46. Sample Absorption Cesium Coefficient Code figure output

1 % Cesium Absorption Coefficient D1 and D2
2 %
3 % Monte D. Anderson
4 % Department of Engineering Physics, Air Force Institute of Technology
5 % 6 Aug 2010
6 %
7 % Calculates cesium D2 absorption coefficent (1/cm) at a given frequency
8 % at temperature T (K) and buffer gas pressures PN2, PHe, and PCH4 (Torr)
9 %

10 % REQUIRES:
11 % fnAbsCoeffCsD1
12 % fnAbsCoeffCsD2
13 % fnAbsCoeffCsD2SingleHFLine
14

15 %% CLEAR
16 close all
17 clear all
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18 clc
19

20 tic
21

22 %% calcuations
23 c = 2.99792458e8; %m/s
24 voD2 = 351725718; %MHz
25 voD1 = 335116049; %MHz
26

27 nu = linspace(-8e9,8e9,500);
28

29 T = 100 + 273.15;
30 PN2 = 0;
31 PHe = 0;
32 PCH4 = 0;
33 cell length = 5;
34

35 absCoeffD1 = zeros(length(nu),1);
36 absCoeffD2 = zeros(length(nu),1);
37 lambdaD2 = zeros(length(nu),1);
38 lambdaD1 = zeros(length(nu),1);
39

40 for i=1:length(nu)
41 absCoeffD1(i) = fnAbsCoeffCsD1(nu(i),T,PN2,PHe,PCH4);
42 absCoeffD2(i) = fnAbsCoeffCsD2(nu(i),T,PN2,PHe,PCH4);
43 a32(i) = fnAbsCoeffCsD2SingleHFLine(nu(i),T,PN2,PHe,3,2);
44 a33(i) = fnAbsCoeffCsD2SingleHFLine(nu(i),T,PN2,PHe,3,3);
45 a34(i) = fnAbsCoeffCsD2SingleHFLine(nu(i),T,PN2,PHe,3,4);
46 a43(i) = fnAbsCoeffCsD2SingleHFLine(nu(i),T,PN2,PHe,4,3);
47 a44(i) = fnAbsCoeffCsD2SingleHFLine(nu(i),T,PN2,PHe,4,4);
48 a45(i) = fnAbsCoeffCsD2SingleHFLine(nu(i),T,PN2,PHe,4,5);
49 lambdaD2(i) = c./(nu(i)*(1e-9)+voD2*(1e-3));
50 lambdaD1(i) = c./(nu(i)*(1e-9)+voD1*(1e-3));
51 end
52

53 %% plot
54

55 figure
56 subplot(2,1,1);
57 plot(nu*(1e-9),absCoeffD1,'LineWidth',2);
58 title(['Cs D 1 Abs Coeff @ ',num2str(T-273.15),'ˆoC']);
59 xlabel('Detuning Frequency (GHz)');
60 ylabel('Abs Coeff (1/cm)');
61 axis tight
62 subplot(2,1,2)
63 plot(nu*(1e-9),absCoeffD2,'LineWidth',2);
64 hold on
65 plot(nu*(1e-9),a32,'LineWidth',1);
66 plot(nu*(1e-9),a33,'LineWidth',1);
67 plot(nu*(1e-9),a34,'LineWidth',1);
68 plot(nu*(1e-9),a43,'LineWidth',1);
69 plot(nu*(1e-9),a44,'LineWidth',1);
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70 plot(nu*(1e-9),a45,'LineWidth',1);
71 title(['Cs D 2 Abs Coeff @ ',num2str(T-273.15),'ˆoC']);
72 xlabel('Detuning Frequency (GHz)');
73 ylabel('Abs Coeff (1/cm)');
74 axis tight
75 hold off
76

77 toc
78

79 % tblSaveD1 = [nu'*(1e-9) lambdaD1 absCoeffD1];
80 % tblSaveD2 = [nu'*(1e-9) lambdaD2 absCoeffD2];
81 % save 'C:\SimAbsCoeff-D1.dat' tblSaveD1 -ascii -double;
82 % save 'C:\SimAbsCoeff-D2.dat' tblSaveD2 -ascii -double;
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Sample Rubidium Absorption Coefficient Code

The following code sample illustrates use of Matlabr function fnAbsCoeffRbD1.m,

creating figure output as shown in Figure 47.

Figure 47. Sample Rubidium Absorption Coefficient Code figure output

1 % RbD1AbsCoeffMaker.m
2 %
3 % Monte D. Anderson
4 % Department of Engineering Physics, Air Force Institute of Technology
5 % 26 Feb 2010
6 %
7 % Calculates absolute aborption coefficient from temperature in Kelvin
8 % and buffer gas pressures
9 %

10 clear all; close all; clc
11 tic
12

13 startGHz = -5.5;
14 stopGHz = 7;
15 numPts = 501;
16 ∆Nu = (stopGHz - startGHz)/(numPts-1);
17

18 T = 273.15 + 110; %temp in Kelvin
19 PHe = 0; %Torr
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20 PCH4 = 0; %Torr
21

22 c = 2.99792458e8; %m/s
23 vo87 = 377.1074633805e6; % Frequency (MHz) Rb87
24

25 alpha = zeros(1,numPts);
26 nuref = zeros(1,numPts);
27 lambda = zeros(1,numPts);
28

29 number1 = 0;
30 for freq = startGHz:∆Nu:stopGHz %GHz from nu ref
31 number1 = number1+1;
32 alpha(number1) = fnAbsCoeffRbD1(freq*1e9,T,PHe,PCH4);
33 nuref(number1) = freq;
34 lambda(number1) = c./(freq+vo87*(1e-3));
35 end
36

37 figure
38 plot(nuref,alpha,'b','LineWidth',2);
39 xlabel('Detuning (GHz)'); ylabel('Absorption Coefficient (1/cm)');
40 title(['Rb D 1 @ ',num2str(T-273.15),'ˆoC']);
41 grid on
42

43 figure
44 plot(lambda,alpha,'b','LineWidth',2);
45 xlabel('Wavelength (nm)'); ylabel('Absorption Coefficient (1/cm)');
46 title(['Rb D 1 @ ',num2str(T-273.15),'ˆoC']);
47 grid on
48

49 % I/Io --------------------------------------------------------------------
50 % Calculates intensity ratio I/Io
51

52 % cellLength = 5; % Cell length in cm
53 %
54 % IovrIo = zeros(1,2001);
55 % number1 = 0;
56 % for freq = -10:.01:10
57 % number1 = number1+1;
58 % IovrIo(number1) = exp(-fnAbsCoeffRbD1(freq*1e9,T,PHe,PCH4)*cellLength);
59 % end
60 %
61 % freq = -10:.01:10;
62 % figure
63 % hold on
64 % plot(freq,IovrIo,'r','LineWidth',2);
65 % xlabel('Detuning (GHz)'); ylabel('I/Io (unitless)');
66 % axis([-10 10 0 1]);
67 % grid on
68 % hold off
69

70 % Save Data ---------------------------------------------------------------
71 tblSave = [lambda' alpha'];
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72 %save 'C:\SimRbD1AbsCoeff-100C.txt' tblSave -ascii -double;
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Kramers-Kronig Group Delay Prediction

The following code calculates delay from absorption coefficient using the Kramers-

Kronig model. This code can be easy modified for any simulated absorption coefficient

or used with observed absorption. Sample output is shown in Figure 48 and Figure 49.

Figure 48. Group velocity output from Kramers-Kronig delay calcula-
tion.

1 % DelayPrediction.m
2 %
3 % Monte D. Anderson
4 % Department of Engineering Physics, Air Force Institute of Technology
5 % 19 Mar 2010
6 %
7 % Calculates predicted delay given absorption coefficient using the
8 % Kramers-Kronig delay model outlined in
9 %

10 % Monte D. Anderson, Glen P. Perram
11 % Slow light in cesium vapor: pulse delay measurements and predicted delay
12 % (Proceedings Paper) Published 11 February 2010
13 % Vol. 7612: Advances in Slow and Fast Light III,
14 % Selim M. Shahriar; Philip R. Hemmer, Editors, 76120A
15 %
16 % REQUIRES:
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Figure 49. Delay output from Kramers-Kronig calculation.

17 % fnAbsCoeffCsD2.m
18 %
19

20 clear all;
21 close all;
22 clc;
23 tic
24

25 % Constants ---------------------------------------------------------------
26 % Physical Constants (NIST CODATA 2006 values)
27 c = 2.99792458e8; % vacuum speed of light (m/s)
28

29 % Cs D2 Data
30 vo = 351.72571850e12; % Frequency (Hz)
31

32 % Scenario Information ----------------------------------------------------
33 T = 100; %Temporary temperature (C)
34 PN2 = 0; %N2 pressure (Torr)
35 PHe = 0; %He pressure (Torr)
36 PCH4 = 0; %CH4 pressure (Torr)
37 vmin = -10100E6; %ref frequency in Hz from center frequency
38 vmax = 10100E6; %ref frequency in Hz from center frequency
39 NumPts = 10000; %Total number of points will be NumPts+1
40 ∆ nu = (vmax - vmin)/NumPts; %discrete step size in Hz
41

42 % Absorption Coefficient --------------------------------------------------
43 tblSimalpha = zeros(NumPts+1,2);
44 for n = 1:NumPts+1
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45 tblSimalpha(n,1) = vmin - ∆ nu + n*∆ nu;
46 tblSimalpha(n,2) = fnAbsCoeffCsD2(tblSimalpha(n,1),273.15+T,...
47 PN2,PHe,PCH4);
48 end
49

50 % figure
51 % plot(tblSimalpha(:,1),tblSimalpha(:,2))
52

53 % Real Index of Refraction ------------------------------------------------
54 t1 = zeros(1,NumPts+1);
55 tblnRe = zeros(NumPts+1,2);
56 for p = 0:NumPts
57 for m = 0:NumPts
58 if(m 6= p)
59 t1(m+1) = (tblSimalpha(m+1,2)/(1e-2))/...
60 ((m*∆ nu + vmin + vo)ˆ2 - (p*∆ nu + vmin + vo)ˆ2);
61 else
62 t1(m+1) = 0;
63 end
64 end
65 tblnRe(p+1,1) = p*∆ nu+vmin;
66 tblnRe(p+1,2) = 1+(((2.99792458e8)/(2*(piˆ2)))*sum(t1)*∆ nu);
67 end
68

69 % figure
70 % plot(tblnRe(:,1),tblnRe(:,2))
71

72 % dn/dv -------------------------------------------------------------------
73 tbldndv = zeros(NumPts+1,2);
74 for n = 2:NumPts
75 tbldndv(n,2) = (tblnRe(n+1,2) - tblnRe(n-1,2))/(2*∆ nu);
76 end
77 tbldndv(:,1) = tblnRe(:,1);
78 tbldndv(1,2) = 0;
79 tbldndv(NumPts+1,2) = 0;
80

81 % figure
82 % plot(tbldndv(:,1),tbldndv(:,2))
83

84 % Group Velocity ----------------------------------------------------------
85 tblVg = zeros(length(0:NumPts),2);
86 for n = 0:NumPts
87 tblVg(n+1,1) = n*∆ nu + vmin;
88 tblVg(n+1,2) = 1/(tblnRe(n+1,2) + (tblnRe(n+1,1) + vo)*tbldndv(n+1,2));
89 end
90

91 % figure
92 % plot(tblVg(:,1)*(1e-9),tblVg(:,2))
93

94 % Delay -------------------------------------------------------------------
95 cell length = 5; %cell length in centimeters
96 tblDelay = zeros(length(0:NumPts),2);

124



www.manaraa.com

97 for n = 0:NumPts
98 tblDelay(n+1,2) = cell length/(tblVg(n+1,2)*2.99792458e10);
99 tblDelay(n+1,1) = n*∆ nu+vmin;

100 end
101

102 % figure
103 % plot(tblDelay(:,1),tblDelay(:,2))
104

105 % Plot/Export Data Files --------------------------------------------------
106

107 %save 'C:\SimAlpha.dat' tblSimalpha -ascii -double;
108

109 tblSaveVg = [tblVg(:,1)*(1e-9) tblVg(:,2)];
110 figure
111 plot(tblSaveVg(:,1),tblSaveVg(:,2),'LineWidth',2);
112 title(['Cs D 2 Group Velocity @ ',num2str(T),'ˆ0C']);
113 xlabel('Detuning Frequency (GHz)');
114 ylabel('Group Velocity (c)');
115 axis([-10 10 -0.01 0.2]);
116 % save 'C:\SimVg.dat' tblSaveVgrp -ascii -double;
117

118 tblSaveDelay = [tblDelay(:,1)*(1e-9) tblDelay(:,2)*(1e9)];
119 figure
120 plot(tblSaveDelay(:,1),tblSaveDelay(:,2),'LineWidth',2);
121 title(['Cs D 2 Delay @ ',num2str(T),'ˆoC']);
122 xlabel('Detuning Frequency (GHz)');
123 ylabel('Delay (ns)');
124 axis([-10 10 -0.5 25]);
125 % save 'C:\SimDelay.dat' tblSaveDelay -ascii -double;
126

127 toc
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Hole Burning Locations

The following code calculates hole burning locations for a cesium D2 pump and

corresponding hole locations in cesium D1, producing the following output shown in

Figure 50.

Figure 50. Hole location calculation output.

1 % HoleBurningLocations.m
2 %
3 % Monte D. Anderson
4 % Department of Engineering Physics, Air Force Institute of Technology
5 % 19 Apr 2010
6 %
7 % Given a frequency relative to the Cs D2 absorption, calculates the
8 % difference from the D2 hyperfine transition frequencies, and plots
9 % the same difference relative to all the D1 transitions. This should
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10 % give relative positions of the hole burnt in the D1 absorption due to
11 % the hole burnt in the D2 spectrum.
12 %
13 %
14 % REQUIRES
15 % fnAbsCoeffCsD2.m
16 % fnAbsCoeffCsD1.m
17 % hfsEnergy.m
18 %
19 clear all;
20 close all;
21 clc;
22

23 % CONSTANTS :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
24 global c eo h hbar kB AMU;
25 global AmCs MCs Inam voD1 voD2 tau;
26 % Physical Constants (NIST 2006 CODATA recommended values)
27 c = 2.99792458e8; % vacuum speed of light (m/s)
28 eo = 8.85418781762e-12; % vacuum permittivity (F/m)
29 h = 6.62606896e-34; % Planck const (Js)
30 hbar = 1.054571628e-34; % Planck const/2pi (Js)
31 kB = 1.3806504e-23; % Boltzmann const (J/K)
32 AMU = 1.660538782e-27; % Atomic Mass Unit (kg)
33 % Cesium Atomic Data
34 AmCs = 132.905451931; % Atomic mass (AMU)
35 MCs = AmCs*AMU; % Mass of Cs atom (kg)
36 Inam = 7/2; % Total nuclear angular momentum
37 % Cs D2/D1 Data
38 voD2 = 351.72571850e12; % Frequency (Hz)
39 voD1 = 335.116049e12; % Frequency (Hz)
40 tau = 30.32e-9; % Lifetime (s)
41

42 %Transition Definitions
43 TransMD2 = [7/2 3/2 3 2;
44 7/2 3/2 3 3;
45 7/2 3/2 3 4;
46 7/2 3/2 4 3;
47 7/2 3/2 4 4;
48 7/2 3/2 4 5];
49 numTransD2 = length(TransMD2);
50

51 TransMD1 = [7/2 1/2 3 3;
52 7/2 1/2 3 4;
53 7/2 1/2 4 3;
54 7/2 1/2 4 4];
55 numTransD1 = length(TransMD1);
56

57 vD1 = zeros(1,numTransD1);
58 for j = 1:numTransD1
59 vD1(j) = (hfsEnergy(TransMD1(j,1),1,TransMD1(j,2),TransMD1(j,4))/h)-...
60 (hfsEnergy(TransMD1(j,1),0,1/2,TransMD1(j,3))/h);
61 end
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62 dvS12 = hfsEnergy(Inam,0,1/2,4)/h - hfsEnergy(Inam,0,1/2,3)/h;
63

64 vD2 = zeros(1,numTransD2);
65 for j = 1:numTransD2
66 vD2(j) = (hfsEnergy(TransMD2(j,1),1,TransMD2(j,2),TransMD2(j,4))/h)-...
67 (hfsEnergy(TransMD2(j,1),0,1/2,TransMD2(j,3))/h);
68 end
69

70

71 % MAIN ....................................................................
72 nu = linspace(-8e9,8e9,1000);
73

74 T = 50;
75 PN2 = 0;
76 PHe = 0;
77 PCH4 = 0;
78 CellLength = 5;
79

80 nuProbe = -3.84e9; % 11732.1790
81 % nuProbe = -3.86e9; % 11732.1783
82 % nuProbe = -3.924e9; % 11732.1762
83 % nuProbe = -3.90e9; % 11732.1770
84 dnuProbe = nuProbe - vD2;
85

86 nuabs = voD2 + nuProbe;
87 lambda = c/nuabs;
88 wavenum = nuabs/c;
89 fprintf('D2 Frequency ----\n');
90 fprintf('%3.4f nm\n',lambda*(1e9));
91 fprintf('%5.4f 1/cm\n',wavenum*(1e-2));
92 strwn = sprintf('%5.4f',wavenum*(1e-2));
93 fprintf('-----------------\n');
94

95 holesD1 = zeros(length(vD1),length(dnuProbe));
96 holeColorStr = zeros(length(vD1),length(dnuProbe));
97 for i=1:length(vD1)
98 for j = 1:length(dnuProbe)
99 holesD1(i,j) = vD1(i) - dnuProbe(j);

100 end
101 end
102

103 absCoeffD1 = zeros(length(nu),length(T));
104 absCoeffD2 = zeros(length(nu),length(T));
105 lambdaD1 = zeros(length(nu),length(T));
106 IRatio = zeros(length(nu),length(T));
107 for i=1:length(nu)
108 absCoeffD1(i,j) = fnAbsCoeffCsD1(nu(i),T+273.15,PN2,PHe,PCH4);
109 absCoeffD2(i,j) = fnAbsCoeffCsD2(nu(i),T+273.15,PN2,PHe,PCH4);
110 lambdaD1(i,j) = c./(nu(i)*(1e-9)+voD1*(1e-3));
111 IRatio(i,j) = exp(-absCoeffD1(i,j)*CellLength);
112 end
113
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114 % PLOTS ...................................................................
115 peak = max(max(max(absCoeffD1)),max(max(absCoeffD2)));
116 ylgt = linspace(0,peak,250);
117 ydrk = linspace(0,peak,1000);
118

119 plotmin = -6;
120 plotmax = -2.2;
121

122 figure
123 subplot(2,1,1)
124 hold all
125 plot(nu*(1e-9),exp(-absCoeffD2*CellLength),'b');
126 ax = axis;
127 axis([plotmin plotmax 0 1]);
128 plot([nuProbe*(1e-9) nuProbe*(1e-9)],[0 1],'c','LineWidth',3);
129 h = text(nuProbe*(1e-9),ax(4)/2,[' Pump @ ',strwn,' cmˆ{-1}'],...
130 'VerticalAlignment','middle',...
131 'HorizontalAlignment','center',...
132 'FontSize',9);
133 set(h, 'rotation', 90)
134 for i = 1:numTransD2
135 plot([vD2(i)*(1e-9) vD2(i)*(1e-9)],[0 1],'b:')
136 end
137 xlabel('Detuning Frequency \nu {\Delta2} (GHz)');
138 ylabel('Transmittance (unitless)');
139 hold off
140

141 subplot(2,1,2)
142 hold all
143 plot([vD1(1)*(1e-9) vD1(1)*(1e-9)],[0 1],'r')
144 ax = axis;
145 axis([plotmin plotmax 0 1]);
146 plot(nu*(1e-9),exp(-absCoeffD1*CellLength),'r');
147 for i = 1:numTransD1
148 plot([vD1(i)*(1e-9) vD1(i)*(1e-9)],[0 1],'r:')
149 end
150 for i=1:length(vD1)
151 for j = 1:length(dnuProbe)
152 plot([holesD1(i,j)*(1e-9) holesD1(i,j)*(1e-9)],[0 1],...
153 'c','LineWidth',2);
154 end
155 end
156 xlabel('Detuning Frequency \nu {\Delta1}(GHz)');
157 ylabel('Transmittance (unitless)');
158 hold off
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Appendix D. Delay-Absorbance Plots

Introduction

Most of the delay plots in this manuscript are given in terms of delay as a function

of detuning frequency. Other graphical interpretations are useful if there is physically

meaningful information which can be extracted. In EIT slow light schemes, Kasapi et

al.(Kasapi et al., 1995) used a particularly insightful plot with absorbance presented

as a function of delay. The slope of the resulting EIT delay was given as the linewidth

of the transitions (Kasapi et al., 1995).

Similar graphical representations of the absorbance as a function of delay can

be created for delays observed in the linear dispersion regime. The following plots

present theoretical absorbance-delay plots from the linear dispersion Kramers-Kronig

delay predictions and delay data from the preceding chapters.

Temperature Dependence

Temperature dependence of the delay-absorbance curves are displayed in Figure 51

and Figure 52. The initial slope of the curve appears to follow a common asymptote,

but the curves depart at longer delays at higher temperatures.

Pressure Dependence

Pressure dependent delay-absorbance curves are shown in Figure 53 and Figure 54

for several simulated helium-broadened samples from 0 Torr to 20 Torr. Notice how

the curves no longer follow a common asymptotic limit compared to the temperature-

dependent delay-absorbance curves thus the initial slope is clearly a function of pres-

sure.
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Figure 51. Delay-Absorbance plot showing temperature dependence be-
tween 40 ◦C and 90 ◦C.

Figure 52. Delay-Absorbance plot showing temperature dependence be-
tween 40 ◦C and 90 ◦C showing detail of delay between 0 ns and 40 ns.
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Figure 53. Delay-Absorbance plot showing pressure dependence between
0 Torr and 20 Torr.

Figure 54. Delay-Absorbance plot showing pressure dependence between
0 Torr and 20 Torrshowing detail of delay between 0 ns and 75 ns.
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Linear Dispersion Delay

Linear dispersion data from Chapters III and IV are used to plot absorbance in

Figure 55 as a function of delay and the predicted delay-absorbance curves (from

simulation) are provided as reference.

Hole-burning Delay

Delay-absorbance curves in the regions surrounding the rapidly varying absorption

created by spectral hole burning are shown in Figure 56 and Figure 57. Data showing

all three pump powers (0 mW, 5 mW and 16 mW) are shown in Figure 56. No-

pump (0 mW) delay-absorbance curve is shown in Figure 57 with the predicted curve

for reference. Deviation from the predicted curve may be indicative of hole burning

effects.

Figure 55. Delay-Absorbance plot showing linear dispersion delay as
shown in Figure 7 with predicted delay-absorbance curves.
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Figure 56. Delay-Absorbance plot showing hole-burning data as shown
in Figure 24.

Figure 57. Delay-Absorbance plot showing 0 mW (no pump) hole-
burning data as shown in Figure 24 with predicted delay-absorbance
curves.
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